
Page 146 

Research Article  

Journal of Research and Review in Science, 146 -152  

Volume 5, December 2018 

 

LASU Journal of Research and Review in Science 

 
 

EULER’S EQUATIONS OF RIGID BODY: ITS CHAOS 

CONTROL, TRACKING AND SYNCHRONIZATION 
Cornelius O.Ogabi, Babatunde A. Idowu, Abiola S. Ogungbe, Emmanuel O Somoye, 
Eugene O Onori. Oluwafunmilayo O. Ometan, Rasaq  Adeniji-Adele, Aghogho Ogwala. 

Department of Physics, Faculty of Science, Lagos State University, Nigeria
 
 
Correspondence 
Cornelius O. Ogabi, Department of Physics, 
Faculty of Science, Lagos State University, 
Nigeria. 
Email:Cornelius.@lasu.edu.ng 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Abstract: 
Introduction: Chaos synchronization and control in dynamical systems 
are essential applications of chaos theory.  Chaos control is sometimes 
needed to refine the behavior of a chaotic model and to remove 
unexpected performance of power electronics. Synchronization of chaos 
also has useful applications to biological, chemical, physical systems and 
secure communications. Lyapunov exponents is one of a number of 
effective ways to describe chaotic properties of non-linear systems. If one 
of the Lyapunov exponents is greater than zero, the system is chaotic, 
and if at least two of the Lyapunov exponents are positive, the system is 
hyper-chaotic. The greater the number of positive Lyapunov exponents, 
the higher the degree of instability in the system. The Eulers’ equation of 
the rigid body has many physical applications, thus, the need to further 
work on its synchronization using the active control method, which has 
been adjudged to be efficient in experiencing the transient performances 
of the controllers designed. The control of the chaotic rigid body has 
been achieved before now, but we have extended it to achieve tracking 
to a desired function, which underlies its usefulness.  
Aims: The aim of this paper is to achieve synchronization of two chaotic 
rigid body systems, to control its chaotic state and to track to a desired 
smooth function using the active control method and backstepping 
technique respectively.   
Methods: Active control and recursive backstepping methods as well as 
Fourth-order Runge-Kutta algorithm was employed in all the simulations. 
In this work, the active control method has been applied to synchronize 
the chaotic Euler’s equations for a rigid body evolving from different initial 
conditions. The control functions have been designed by means of 
Recursive Backstepping based on Lyapunov stability theory to control 
and track the chaotic system to a desired function.  
Results: The results obtained show that the error state variables move 
chaotically with time initially when the controllers are deactivated and 
when the controllers are switched on at t = 6 s synchronization of the two 
systems evolving from different initial conditions is achieved. The state 
variable stabilize at the equilibrium point for f(t) = 30cos(0.05t). The 
results also showed that the designed controllers are effective in 
stabilization and tracking to any desired smooth function f(t) of the 
chaotic system. 
Conclusion: The control, tacking and synchronization of Euler’s equations 
of rigid body was achieved using the backstepping technique and active 
control method respectively and this suggests the possibility for 
communication using chaotic wave forms as carriers, perhaps with 
application to secure communication. 
Keywords: Euler’s equation, Dynamical systems, Active Control, Chaos, 
Tracking, Synchronization.  
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1. INTRODUCTION: 
Edward Ott, Celso Grebogi and James Yorke (OGY) in 
[1] were the first to introduce chaos control, while the 
presentation of synchronization of chaotic systems 
was by Pecora and Carroll [2] in the same year. 
Thereafter, chaos control and synchronization has 
received increased attention. Several research have 
been carried out to develop chaos control and 
synchronization frameworks for dynamical systems 
due to its practical applications in science, 
engineering, biological sciences and to mention but a 
few. 
In recent times, many systems have been developed 
to describe real life situations and the rigid body has 
evolved over time as one of the systems in this area. 
Due to its applicability, the regular and chaotic motions 
in applied dynamics of a rigid body has been studied 
by [3], where they stated that periodic and regular 
motions, having a predictable functioning mode, play 
an important role in many problems of dynamics. 
Therein, the structure of phase space was investigated 
as well as the phase trajectories of the motion which 
were constructed by a numerical implementation of the 
Poincare point map method. The transition to chaos in 
the phase portrait of a restricted problem of rotation of 
a rigid body with a fixed point has been studied by [4] 
and they went further to show that - two interrelated 
mechanisms responsible for chaotification are the 
growth of the homoclinic structure and the 
development of cascades of period doubling 
bifurcations. 
In the works by [5, 6], the adaptive synchronization in 
chaotic rigid body motions were studied, where the 
sufficient stability criterion is derived for global 
synchronization of two chaotic rigid body motions with 
linear feedback control. In the work, the proposed 
scheme can be implemented without requiring the 
upper bound of the trajectory of the chaotic system. In 
the work of Laoye et al [7], chaos control and reduced-
order synchronization of the rigid body was 
investigated.  
In order to achieve chaos control and synchronization 
of chaotic systems, many control techniques have 
been developed and utilized such as active control 
[8,9,10,], backsteping technique [11,12], sliding mode 
control [13,14], etc. 
In this work, we investigated the chaos control, 
tracking and synchronization of the Euler’s rigid body. 
In the work by [7], tracking of the rigid body was not 
investigated and the synchronization is of reduced-
order constituting the rigid body (3D) and a second-
order Duffing oscillator whereas we considered the 
synchronization of the identical rigid body system of 
same order. The chaos control was of the same order 
and it was extended to tracking in our work.  
The work is organized as follows: in the next section is 
the system description which is followed by designing 
the active control method controllers for 
synchronization of the rigid body of same order. 
Section 4 presents the chaos control of the rigid body 
which is followed by the tracking control in Section 5 
and the paper is concluded in Section 6.                       
 
 

 
 

2. SYSTEM DESCRIPTION  
The Euler’s equations for the free rotation of rigid body 
was converted to chaotic system by using chaos anti-
control and chaotic sequences were produced. [15] 
Chaos control can suppress or eliminate chaotic 
dynamical behaviour. Chaotic anti-control through 
external input or adjustment or adjustment to internal 
parameters, mainly results in the original non-chaotic 
system becoming chaos or the chaos of the original 
system becoming stronger. In order to implement the 
control and anti-control of chaos the controller should 
be designed as simply as possible in order to ensure 
low-cost, easy realization and convenient use. The 
creation of a chaos generator to implement chaotic 
control is a problem for engineering design. A simple 
and strict chaos controller demands an equivalent level 
of competency in mathematics and the capability in the 
engineering design. [16, 17] 
Feedback control is one of the basic methods for the 
control and anti-control of chaos. The linear feedback 
controller is the simplest controller that can be used to 
implement chaotic anti-control. Using Lyapunov 
exponents of control or anti-control of chaos is one of a 
number of effective ways to describe chaotic 
properties of non-linear systems. The number of 
Lyapunov exponents is the same as the dimension n 
of the state space of the system. If one of the 
Lyapunov exponents is greater than zero, the system 
is chaotic, and if at least two of the Lyapunov 
exponents are positive, the system is hyper-chaotic. 
The greater the number of positive Lyapunov 

exponents, the higher the degree of unpredictability in 

the system.  
The Euler’s equations of free rotation of rigid body are 
given by [18, 19] as:   
                                                                                            

                            (1)                                                                        

Where  are main moments of inertia and 

are angular velocities of the spindle 

and  are the imposed torques, 
respectively. Through the linear feedback system, a 
non-chaotic free rotation system of rigid body is 
transformed into a chaotic system. Because the 
angular velocities are changing parameters of the 
system (note: The mechanism synthesis only requires 
that chaotic sequences be produced without 
considering the parameter direction. It is easy to detect 
the angular velocities in the engineering system), the 
imposed moments are feedback linearly by the angular 

velocities, that is, , where   
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Suppose,    ,  

, and   
Equation (1) is transformed into equation (2) as: 

                                                 (2)                                                                                                                    

The conditions whereby the system produces chaos 
are as follows:  

(i)  

(ii)  

We now select  (to meet 

 ), also a = 5, b = -10, c = -3.8        (to 

meet  and ,) 
Equation (2) is transformed into equation (3) as: 

                                              (3)                                                                                                                   

In equation (3),  are the states and (a, b, c)  are 

system parameters. We show that it is chaotic for the 
parameters: 

.                                   (4)                                                                                    
Using Wolf’s algorithm [20], the Lyapunov exponents 
of system (3) are obtained for the parameter values as 

in (4) and  for 

seconds as 

                 (5)                                                                                   
Clearly, system (3) is chaotic since it has a positive 

Lyapunov exponent , see figures (1) and (2). By 
adding all the Lyapunov exponents in (5), we get their 

sum as: , showing that 

system (3) is dissipative and it has a strange chaotic 
attractor. The Kaplan-Yorke fractal dimension of 
system (3) is calculated as:   

 

 
Figure 1 Phase Portraits: (a) xy-plane, (b) xz-plane, (c) yz-plane 

 

Figure 2: Lyapunov Exponents for system equation 3 

 
2.1. Designed of active control for synchronization 

We consider and rewrite system (3) as the drive 

system as: 

                                                     (6) 

And the response system as: 

                                     (7)      

Where  are active control functions to 

be determined; defining the error states for the states 
variables as: 

         (8)                  

And following the procedure of active control design, 
we subtract system (6) from system (7) and using the 
definition in equation (8), we obtain the error dynamics 
as equation given by:  

          (9)                 

Redefining the control functions as follows: 
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                   (10)                                                                                         

The error dynamics equation (9) becomes: 

                                                      (11)                                                                                                                  

In the active control method, we choose a constant 
matrix A which will control the error dynamics (11) 
such that: 

                               (12)                                                                                                   

Several choice of A can satisfy system (12). Here we 
choose the following matrix that satisfy the Routh-
Hurwtiz criteria for stability of the synchronized state: 

                        (13)                                                                                              

Which immediately yields the control functions: 

    (14)                                                                                       

Provided the eigenvalues (  are negative 

definite. Here, we have chosen 

 for simplicity. 

3. NUMERICAL  SIMULATIONS 

By using fourth-order Runge-Kutta algorithm with initial 

conditions ,

,  a time step of 0.001 

and fixing the parameter as in figure (1) to ensure 

chaotic dynamics of the state variable, we solved 

systems; (6), (7) and (9) with the controllers 

 as defined in (14). The results obtained 

show that the error state variables move chaotically 

with time when the controllers are deactivated and 

when the controllers are switched on at t = 6 seconds 

as shown in figure (3a) to (3c), while the error state 

variables converges to the origin and thereby 

guaranteeing the synchronization of the system (6) 

and (7).  See Figure (3d). 

Figure (3a) to (3c); Complete synchronization of 

system (6) and (7) with   and   

 

 

Figure (3d) Time-history of synchronization error between systems 

(6) and (7) with  and  

4 CHAOS CONTROL BASED ON RECURSIVE BACKSTEPPING. 

Consider an autonomous system in ‘’strict-feedback’’ 
form as follows: 

 
                                                   (15)              

 

 
                                                                                                     

Where  are the state variables of 

the system,  is a linear function, 

 are nonlinear functions and 

 is a periodic function of time. To control the 

chaotic system in the form of (15) as follows:     

  

                                          (16)                 

 
     

                                                                       

Where  are control functions. Now 

consider a known, bounded and smooth reference 

model given as:  

where   are the state 

variables:  are known nonlinear 

functions with their  derivatives uniformly bounded 

in t. the objective is to design recursive backstepping 

controllers for system (15) that guarantees global 

stability and forces the output  of system (15) to 

asymptotically track the output  of reference 

model that is:  The new 

chaotic system to be controlled is given by  

                              (17)              

Where control functions to be 

determined, to obtain the controllers,  , we 

defined the error states as: 



LASU Journal of Research and Review in Science Page 150 

 

LASU Journal of Research and Review in Science 

 

where  are the reference outputs which 

are recursively defined as follows:  

                                                             (18)                                                                                                                    

 
Where  are arbitrary control parameters 

to be chosen later. With equation (17) 

and: , 

we obtain the error dynamics given by: 

+  

+         (19)                                                                                          

+  

Consider the Lyapunov function as:  

                                                         (20)                                                                                                                    

The time derivative of (20) is: 
 

                 (21)                                                                                   

+

+       (22)                                

+  

 

 
        (23)                                                                                                        

 
And , then  

 

                                  (24)                                                                                                  

Is negative definite and according to LaSalle-

Yoshizawa theorem the equilibrium (0,0,0) of system 

(20) is asymptotically stable. The controller  does 

not change the equilibrium of system (20). That is (0, 

0, 0) is still in equilibrium. Consequently the new 

chaotic system is stabilised at the origin under the 

controller (23). 

4.1 RESULTS COMPUTATIONS 

In figure (3a) to (3c), we present numerical results to 

illustrate the effectiveness of the controllers. The 

controllers have been activated at  It is 

obvious that the system has been stabilized to the 

desired equilibrium point. 

 

Figure 3 Time response of the state 

4.2 TRACKING CONTROL OF THE CHAOTIC SYSTEM. 

We present recursive backstepping control for tracking 

of the chaotic system, to track to a smooth function of 

time .  

                             (25)                

Where control functions to be 

designed, to obtain the controllers,  , we defined 

the error states as: 

 

where  are the reference outputs which 

are recursively defined as follows:  

                                                             (26)              

 
Where  are arbitrary control parameters 

to be chosen approximately. With equation (25) 

and: , 

we obtain the error dynamics given by: 

+

 

+

                                            (27)              

+

 

Consider the Lyapunov function as:  

                                                     (28)                

The time derivative of (28) is: 

              (29)                 

To satisfy the condition for asymptotic stability of the 

error system (27) necessary for tracking, such that 

 we substitute (27) into (29) 

with the choice of controllers as follows: 
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 so that, the 

controllers can be written as: 

+

 

+

                                                 (30) 

+

 

We choose , from our observation 

that the numerical simulation of system (25) be 
effectively controlled. Equation (30) reduces to: 
 
 
 

+

 

+

                                                         (31) 

+

 

 
 
 
 
 4.3 NUMERICAL SIMULATIONS. 

We verify the effectiveness of the proposed scheme, 

the fourth-order Runge-Kutta algorithm is applied with 

the initial conditions , and a 

time step of 1e-3 and fixing the parameter values as in 

Figure (1) to ensure chaotic dynamics of the state 

variables, we solve system (25) with controllers 

 as defined as in (31). The result 

obtained show that the state variables move 

chaotically with time when the controllers are 

deactivated and when the controllers are switched  on 

at  the state variable stabilize at the 

equilibrium point for  as shown 

in figure (4). The results showed that the designed 

controllers (31) are effective in stabilization and to 

track any desired smooth function  of chaotic 

system. 

 

 

 
Figure 4 (a) to (c): Time responses of the state variables 

 for chaotic system with the control  

activated at  to track  

5. Conclusion: 

In this work, the active control method has been 

applied to control and synchronize chaotic Euler’s 
equations for a rigid body. Also control functions have 

been designed by means of Recursive Backstepping 

based on Lyapunov stability theory to control, track 

and synchronize the two identical chaotic systems 

evolving from different initial conditions. Numerical 

simulations are given to demonstrate the effectiveness 

of the proposed controllers. Control and 

synchronization of Euler’s equations of rigid body 
suggests the possibility for communication using 

chaotic wave forms as carriers, perhaps with 

application to secure communication. 
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