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ORIGINAL RESEARCH
A Two–parameter Family of Exponentially–fitted Obrechkoff Methods for Second­order Bound­
ary Value Problems

Abstract:
Introduction: Generally, classical numerical methods may not be well suited
for problems with oscillatory or periodic behaviour. To overcome this defi­
ciency, they are modified using a technique called exponential fittings. The
modification makes it possible to construct new methods suitable for the effi­
cient integration of oscillatory or periodic problems from classical ones.
Aims: In this work, a two–parameter family of exponentially–fitted Obrechkoff
methods for approaching problems that exhibit oscillatory or periodic be­
haviour is constructed.
Materials and Methods: The construction is based on a six­step flowchart
described in the literature.
Results: Unlike the single–frequency method in the literature, the con­
structed methods depend upon two frequencies which can be tuned to solve
the problem at hand more accurately. The leading term of the local truncation
error of the new family of method can also be easily obtained from the given
general expression. The efficiency of the new methods is demonstrated on
some numerical examples
Conclusion: This work provides extension to the results obtained in by au­
thors in the literature.
Keywords: Multiparameter, Exponentially–fitted, Obrechkoff Method, Oscil­
latory, Periodic
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1 INTRODUCTION

In this paper, the second–order two–point boundary value
problem of the form

u′′ = f(t, u), u(a) = η1, u(b) = η2 (1)

with oscillatory or periodic behaviour is considered. Recently,
the construction of methods that efficiently approach the os­
cillatory or periodic behaviour of the problem (1) is gaining
popularity. Since classical methods may not be well suited for
this purpose, they have to be adapted. This adaptation is the
core of exponential fitting technique [13] where the adapted
numerical method is developed in order to be exact on prob­
lems whose solution is linear combination of

1, t, · · · , tK ,exp(±ωt), t exp(±ωt), · · · , tP exp(±ωt) (2)

where K and P are integers. Several exponentially–fitted
methods have been constructed and many classical meth­
ods have been adapted for problems with the fitting space
(2). In [20], the exponentially–fitted variants of the classi­
cal two step Numerov method was constructed. The authors
used the constructed variants to compute large number of
eigenvalues of regular Sturm–Liouville problems and showed
that the pure exponential version gave better accuracy. The
authors in [11] gave the optimal exponentially fitted two­step
Numerov method for solving two­point boundary value prob­
lems. More recently, in [9], hybrid two­step exponentially
fitted methods were constructed and implemented on initial
value problems. The author in [10] constructed the exponen­
tially fitted versions of the classical two­step Numerovmethod
and also constructed methods that are fitted exponentially for
the solution of fourth­order boundary value problems. For the
first time, the combination of exponential fitting and methods
of Störmer/Verlet and Obrechkoff type were discussed by in
[19] and [21] respectively. The authors in [19] constructed the
exponentially­fitted variants of the Störmer/Verlet method for
second order problems of the form y′′ = f(y). Exponentially­
fitted Obrechkoff method with m=2 was constructed for the
problem y′′ = f(x, y) and the result for m=3 was also stated.
Authors in [21] also discussed the linear stability properties of
the methods constructed. However, not so much has been
done in the construction of exponentially fitted methods for fit­
ting space with multi­pair frequencies. In [4, 5, 6], the authors
constructed Runge–Kutta type method for the fitting space

1, t, · · · , tK ,exp(±ωt), exp(±2ωt), · · · ,exp(±(P + 1)ωt). (3)

The authors in [22] proposed a multiparameter exponentially­
fitted Numerov method for the space

1, t, · · · , tK ,exp(±ω0t),exp(±ω1t), · · · ,exp(±ωpt). (4)

for solving periodic problems with more than one frequency.
In this paper, the general fitting space

1, t, · · · , tK , exp(±ωit), t exp(±ωit), · · · , tPi exp(±ωit),

i = 1, 2

}
(5)

is considered. This work is related to [20, 21] and shall pro­
vide extension to the results obtained in [21].

2 CONSTRUCTION OF METHOD

The classical symmetric Obrechhoff method for solving (1) is
given by

un+1 − 2un + un−1 =
m∑
i=1

h2i
(
γiu

(2i)
n+1 + 2βiu

(2i)
n + γiu

(2i)
n−1

)
. (6)

In this paper however, we consider the case of m=2. To con­
struct the exponentially–fitted variants of (6), we rewrite (6) in
a more general form as

un+1 − 2δ0un + un−1 =
m∑
i=1

h2i
(
γiu

(2i)
n+1 + 2βiu

(2i)
n + γiu

(2i)
n−1

)
(7)

and follow the six step procedure described in ([13]) with a
slight modification. Following step one of the procedure, the
corresponding linear difference operator L[h, γ] reads

L[h, γ]u(t) = u(t+ h)− 2δ0u(t) + u(t− h)−
m∑
i=1

h2i
(
γiu

(2i)(t+ h) + 2βiu
(2i)(t) + γiu

(2i)(t− h)
)

(8)

where γ := (δ0, γ1, γ2, β1, β2). To compute the moments
L∗
k(γ) = hkL[h, γ]tk |t=0, we apply step two of the procedure

to obtain

L∗
0(γ) := 2− 2δ0 = 0

L∗
2(γ) := 2− 4β1 − 4γ1 = 0

L∗
4(γ) := 2− 48β2 − 24γ1 − 48γ2 = 0

L∗
6(γ) := 2− 60γ1 − 720γ2 = 0

L∗
8(γ) := 2− 112γ1 − 3360γ2 = 0

Due to the symmetry of the method, L∗
2k+1(γ) = 0 for all k ∈

N. The algebraic system above is compatible and one finds
M = 10 (i.e the maximal M for which a solution exists for the
above system is 10). Solving the above system one obtains

β1 = 115
252

, β2 = 313
15120

, γ1 = 11
252

, γ2 = − 13
15120

, δ0 = 1
}

(9)

The resulting classical method is

un+1 − 2un + un−1 =

h2

252

(
11u(2)(t+ h) + 230u(2)(t) + 11u(2)(t− h)

)
−

h4

15120

(
13u(2)(t+ h)− 616u(2)(t) + 13u(2)(t− h)

)
(10)

We shall refer to the method (10) as S0. To construct the
two­parameter exponentially­fitted variants of (10) with a ref­
erence set (in this case I = 2) ofM functions (5), one applies
the third step of the six­step procedure which results due to
the symmetry in G−(ωhi

, γ) = 0 and

−1

2
G+(ωhi , γ) =

δ0 + β2ω
4
hi

+ β1ω
2
hi

+
(
γ2ω

4
hi

+ γ1ω
2
hi

− 1
)
cosh (ωhi) (11)
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where ωhi
= ωih. Since M = 10, step four of the procedure

gave rise to a two–parameter family of six exponentially fitted
methods characterized by:

S1 : (K,P1, P2) = (−1, 0, 3): The two­parameter exponentially
fitted case with the set

{
exp(±ω1t),exp(±ω2t), t exp(±ω2t), t

2 exp(±ω2t), t
3 exp(±ω2t)

}
S2 : (K,P1, P2) = (−1, 1, 2): The two­parameter exponentially

fitted case with the set

{
exp(±ω1t), t exp(±ω1t),exp(±ω2t), t exp(±ω2t), t

2 exp(±ω2t)
}

S3 : (K,P1, P2) = (1, 0, 2): The two­parameter exponentially­
fitted case with the set

{
1, t, exp(±ω1t),exp(±ω2t), t exp(±ω2t), t

2 exp(±ω2t)
}

S4 : (K,P1, P2) = (1, 1, 1): The two­parameter exponentially­
fitted case with the set

{1, t, exp(±ω1t), t exp(±ω1t),exp(±ω2t), t exp(±ω2t)}

S5 : (K,P1, P2) = (3, 0, 1): The two­parameter exponentially­
fitted case with the set

{
1, t, t2, t3,exp(±ω1t),exp(±ω2t), t exp(±ω2t)

}
S6 : (K,P1, P2) = (5, 0, 0): The two­parameter exponentially­

fitted case with the set

{
1, t, t2, t3, t4, t5,exp(±ω1t),exp(±ω2t)

}
The coefficients for each case above are obtained by solving
for γ, the nonlinear algebraic system{

L∗
k(γ), k = 0, · · · ,K

G± (p)
(Ωhi

, γ), 0 ≤ p ≤ Pi, i = 1, 2

In this paper, we shall concern ourself with only the case: S1 :
(K,P1, P2) = (−1, 0, 3). The expressions for the coefficients
of the case considered are obtained in series form as follows:

• Case 1 :: S1 : (K,P1, P2) = (−1, 0, 3):

δ0 =

(
47441ω10

h2

86502659443200
−

233ω8
h2

42247941120

)
ω4
h1

+(
59ω8

h2

152409600
−

233ω10
h2

10561985280

)
ω2
h1

+ 1 (12)

γ1 =

(
−

23203ω4
h2

344044668240
+

2357ω2
h2

15017822820
+

233

88016544

)
ω4
h1

+

(
69556ω4

h2

18772278525
−

52ω2
h2

2750517
−

59

317520

)
ω2
h1

−
59ω2

h2

79380
−

391ω4
h2

22004136
+

11

252
(13)

γ2 =

(
−

6017021ω4
h2

3633111696614400
+

44753ω2
h2

1441710990720
−

233

1056198528

)
ω4
h1

+

(
184763ω4

h2

2621292710400
−

20087ω2
h2

13202481600
+

59

3810240

)
ω2
h1

+
59ω2

h2

952560
−

83561ω4
h2

26404963200
−

13

15120
(14)

β1 =

(
23203ω4

h2

344044668240
−

2357ω2
h2

15017822820
−

233

88016544

)
ω4
h1

+

(
−

69556ω4
h2

18772278525
+

52ω2
h2

2750517
+

59

317520

)
ω2
h1

+
391ω4

h2

22004136
+

59ω2
h2

79380
+

115

252
(15)

β2 =

(
8307851ω4

h2

3633111696614400
−

157889ω2
h2

1441710990720
−

1165

1056198528

)
ω4
h1

+

(
2304301ω4

h2

5766843962880
+

144887ω2
h2

13202481600
+

59

762048

)
ω2
h1

+
318161ω4

h2

26404963200
+

59ω2
h2

190512
+

313

15120
(16)

2.1 Local Truncation Error (LTE)

The general expression of the leading term of the local trun­
cation error (lte) for an exponentially fitted method obtained
in this way with respect to the basis (5) takes the form

lteEF (t) = (−1)
∑I

i=1 Pi+IhM L∗
K+1(γ(Ωhi))

(K + 1)!ΩP1+1
h1

· · ·ΩPI+1
hI

×

I∏
i=1

(D2 − ω2
i )

Pi+1, Dm :=
dm

dtm
(17)

withK,P1, · · · , PI andM satisfying the conditionK+2(P1+
· · · + PI) = M − 2I − 1, ([2]). Using (17), the leading terms
of the local truncation error for the case considered above is
obtained as:

lte(−1,0,3) = (δ0 − 1)

(
2u(10)(t)

ω2
1ω

8
2

−
2
(
ω2
1 + 4ω2

2

)
u(8)(t)

ω2
1ω

8
2

−

2
(
−6ω4

2 − 4ω2
1ω

2
2

)
u(6)(t)

ω2
1ω

8
2

−
2
(
4ω6

2 + 6ω2
1ω

4
2

)
u(4)(t)

ω2
1ω

8
2

−
2
(
−ω8

2 − 4ω2
1ω

6
2

)
u′′(t)

ω2
1ω

8
2

− 2

)
(18)
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3 NUMERICAL EXPERIMENTS

The aim of the computational analysis carried out in this sec­
tion is to investigate the accuracy and efficiency of the con­
structed methods on some standard problems compared with
some existing methods. Here focus is on two test cases. The
first problem studied in [22] has frequencies which are neither
real nor pure imaginary but rather are complex conjugates.

3.1 Problem 1

Consider the boundary value problem

y′′ =
3

4
y − exp(t) sin

(
t

2

)
, y(0) = 1, y(π) = 0 (19)

whose solution is given by

y(t) = exp(t) cos
(
t

2

)
(20)

Problem (19) has two complex conjugate frequencies which
are: ω1 = 1 + 1

2 i and ω2 = 1 − 1
2 i. To investigate the ac­

curacy of the constructed methods, Problem (19) is solved
using one of the methods constructed in this work viz:S1 :
(K,P1, P2) = (−1, 0, 3) and the results obtained are com­
pared with the classical Obrechkoff method with M=2 (cO­
brechkoff M=2) and exponentially–fitted Multifrequency Nu­
merov (M2Km1P4) of [22]. Using different values of steplength
h, the maximum absolute value for each steplength is ob­
tained as presented in Figure 1.

Figure 1: Maximum absolute errors for Problem 1 as a func­
tion of the step­size h = 2−k, k = 2(1)4

3.2 Problem 2

The second problem considered in this paper is the boundary
value problem

y′′ = y + 2 exp(t)− 8 exp(3t), y(0) = −1, y(1) = exp(1)− exp(3) (21)

with exact solution

y(t) = texp(t)− exp(3t) (22)

As seen from Figure 2 the method also gave better results.

Figure 2: Maximum absolute errors for Problem 2 as a func­
tion of the step­size h = 2−k, k = 1(1)4

4 CONCLUSION

In this paper, the work of the authors in ([21]) has been ex­
tended to allow for a larger set of fitting space for exponentially–
fitted Obrechkoff methods. The extension involves the con­
struction of a family of exponentially–fitted Obrechkoff meth­
ods suitable for the integration of periodic/oscilatory problems
with two frequencies. The step by step application of the
six­step procedure for the construction of the family of two–
parameter exponentially fitted Obreckhoff methods has been
presented. Unlike the single parameter method constructed
in ([21]), the coefficients are now functions of two frequen­
cies. The leading term of the local truncation error of the new
family of method can also be easily obtained from the given
general expression.
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