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Abstract: 
Introduction: Image searching is a continual challenge even with the 
many image retrieval models that have sprung up. Sketch-Based 
Image Retrieval (SBIR) models attempt to solve this challenge by 
searching using sketching. The existing SBIR algorithms have limited 
performance because of ambiguities and variations in hand-drawn 
sketches. 
Aims: The aim of this work was to review and identify the strengths 
and weaknesses of the existing SBIR models. 
Materials and Methods: Articles were selected from Google Scholar 
assessing strictly sketch construction models. Search terms include 
sketch construction, sketch-based image retrieval, hypermedia, 
multimedia, design strategies, and algorithms.  
Results: The search returned 455 articles of which only 134 studies 
met the inclusion criteria. 30 papers were on Convolutional Neural 
Network (CNN) and hybrids. 6 on Contour and Stroke Segments. 4 
on Generative Adversarial Network while 3 papers were on Deep 
Hashing. 6 papers reported use of 3D-CNN-based methods while 85 
papers used other methods like sparse coding and bag of regions. 
Accuracy, recall and precision ranged from 59.47% to 99.4%, 
20.10% to 47.70% and 33.40% to 51.00% respectively. 
Conclusion: There are some promising SBIR models but lots of 
effort is required if computational SBIRs are to be adopted. Most 
studies did not include any performance metric which makes it 
difficult to assess the performances of the algorithms proposed. 
Researchers are advised to always report the performance 
algorithms. The future plan is to develop a robust SBIR algorithm 
which will accommodate handwriting ambiguity variations. 
Keywords: Image sketching, image Retrieval, Hypermedia, 
Multimedia, Image Construction. 
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1. INTRODUCTION

As the proliferation of image capturing devices 

has continued to increase exponentially, so also 

is the number of images in the multimedia space. 

Unlike text-based searches, searching for images 

has continued to be a challenge even with the 

many models that have sprung up over the years 

[1-3]. Sketch-Based Image Retrieval (SBIR) 

models attempt to solve this challenge by 

allowing users to draw or sketch the images they 

intend to search and the search engine in turn, 

retrieves all relevant images. Multimedia data are 

of high dimensions and are huge. Also, the 

importance and applications of multimedia data 

plus the ever-increasing activities on social media 

has led to an exponential growth of the 

multimedia space. These make image retrieval 

especially when they are untagged, time-

consuming, tasking, and cumbersome [4-6]. 

There are increasing research efforts on the 

development of image retrieval models targeted 

at improving performance and creation of smart 

models for retrieval of images and multimedia 

files.  

Image retrieval algorithms can be grouped into 

different categories, for example, the Fine-

Grained SBIR (FG-SBIR), Zero-Shot SBIR (ZS-

SBIR) and Low-Shot SBIR (Figure (1)). Fine-

Grained requires user intervention because it 

relies on specific photo instance given a free-

hand sketch input [7]. On the contrary, the zero-

shot  retrieves images  even without prior sketch 

from the user [8, 9]. Zero-Shot is commonly used 

in real-life scenarios, unlike traditional SBIR 

methods that assume that both the training and 

testing classes share the same categories, which 

in real-life, is inapplicable [10]. Low-Shot on the 

other hand, retrieves images using hand-drawn 

sketch queries that are rarely seen during the 

training phase [11]. 

For the Zero-Shot SBIR,  at retrieval time, 

sketches can be gotten from novel classes, that 

were not present at training time using the Inverse 

auto-regressive flow-based variational auto-

encoder for zero-based SBIR [12]. Likewise, 

Norm-guided adaptive visual embedding (NAVE) 

for ZS-SBIR builds the common embedding 

based on visual similarity rather than language-

based pre-defined prototypes [13]. Another is the 

Three-Way Vision Transformer (TVT) method 

which is also a Zero-Shot Sketch-Based Image 

Retrieval (ZS-SBIR) system that retrieves natural 

images related to sketch queries from unseen 

categories. It operates through the Multi-Modal 

Hypersphere Learning [9]. 

In Fine-Grained SBIR model, the multi-stream 

encoder-decoder model was used to guide 

representation of the vector space of the current 

sketch to approximate that of its later sketches. 

This  helps to realize the retrieval performance of 

the sketch with fewer strokes to that of the sketch 

with more strokes [14]. A triplet homogeneous 

network was first used to solve the Fine-Grained 

Color SBIR (CSBIR) problem using  a novel 

ranking method based on multi-branch deep 

convolutional neural networks that considered 

both shape matching and color matching [15]. 

Also, a novel network that is capable of cultivating 

sketch-specific hierarchies and exploiting them 

was designed to match sketch with photo at 

corresponding hierarchical levels also for fine-

grained SBIR [16]. 

Figure 1: (a), (b) and (c) represent the search 

flow for FG-SBIR, ZS-SBIR and Low-Shot 

SBIR systems respectively 

Some older methods however purely detect local 

features via densely sampled stroke points and 
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explained by quantized histogram of gradients 

interpolated by Poisson equation [17]. Fuzzy C-

means for clustering, wavelet Transform for 

denoising, wavelet transform for image 

processing and indexing was done by the Lucene 

Algorithm [18]. While some newer ones first 

transform the sketch and photo into the same 

domain before actual comparisons starts [19, 20], 

others generates complex and creative sketches 

form images that are later used for corresponding 

image matching purposes [21]. 

All with the aim of devising the best methodology 

that can effectively search out images via 

sketches as input queries. 

Unfortunately, the existing sketch-based image 

retrieval algorithms have limited performance 

because of ambiguities and variations in hand-

drawn sketches. Issues such as cross-domain 

incompatibility, class imbalance, invariance in 

rotation, translation and scale, invariance to 

similarity transformations, spatial deformations 

exists [4, 22-27]. The problems associated with 

these sketch-based image retrieval models are 

currently attracting a lot of research efforts 

because of the importance of images in this 

technology-driven world. This has spurred the 

reason for this work. The goal of this study was to 

review the existing image retrieval models, 

identify their strengths and weaknesses, and 

recommend possible improvements. 

2. MATERIAL AND METHODS

The review was conducted using the Systematic 
Literature Review steps [28, 29]. These include 
study design, search strategy and information 
sources; study selection and data collection 
process; and quality assessment and data 
synthesis. 

2.1 Study Design, Search Strategy 
and Information Sources 

A systematic review was carried out on sketch 
construction for sketch based image retrieval 
studies that met a priori defined inclusion and 
exclusion criteria. Search strategy used is 
composed as follows: (a) Construction of search 
terms by major keywords identification (b) 
Determination of synonyms or alternate words 
for the major keywords; (c) Establishing 
exclusion criteria to make exclusion in the course 
of search 

and (d) Application of Boolean operators in the 
construction of required search terms.  

Results for (a): Sketch, Image, Retrieval, Dataset, 
Hypermedia, Multimedia, Construction. 

Results for (b): sketch construction AND "sketch 
based image retrieval" hypermedia OR 
multimedia OR "design strategies" OR algorithms 
"sketch based image retrieval" 

Results of (c): -video -audio 

Results for (d): sketch construction | "sketch 
based image retrieval" | hypermedia | multimedia 
| "design strategies" | algorithms | "sketch based 
image retrieval" -video -audio 

Searches were conducted in Google Scholar 
database which comprises of peer-reviewed 
articles.  Construction models for image 
sketching and retrieval were strictly searched for 
using the search term constructed as in “Results 
for (d)” above – and this became the final search 
term arrived at for this research work. The 
resources returned by the searches fall into 
different publication categories, e.g. 
dissertations, theses, journals, research 
proposals, conference proceedings, articles and 
book chapters. 

2.1.1 Study Selection and Data Collection 
Process 

To present the study selection process, the 
Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) [15] was 
adopted. This established the studies included 
and those excluded for this research. The study 
selection process is represented in Figure (2) in 
the PRISMA flow diagram. 

Considerations were based on studies involving 
sketch-based image retrieval and sketch 
construction models only. Restrictions on the 
study was on sketch based image retrieval as 
applied to sketch construction. Thus, the usage of 
the search terms: sketch construction AND 
sketch based image retrieval, hypermedia, 
multimedia, design strategies and algorithms. 

2.1.2 Exclusion criteria 

Studies were excluded if they are based on the 
following: 
a. Irrelevant study design
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b. Incomplete study design
c. Inappropriate study design
d. No information on outcomes of interest

Figure 2: Flow Diagram for Preferred 
Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) of included studies 

2.1.3 Selecting Primary Sources 

Primary sources were initially selected based on 
the identification of the results of various studies. 
These studies were based on both the search 
term and the inclusion of one or more elements of 
the keywords that is related to the work in any 
way. The publication assessment quality was 
also a criterion on which selection was made and 
in other to minimize bias, the following was put 
into consideration; If the algorithm are for sketch-
based image retrieval and construction; If the 
image retrieval method was sketch based; If the 
algorithm for sketch-based image retrieval is 
clearly computational; If the retrieval method was 
specifically for multimedia files; If design 
strategies for image retrieval via sketch was 
computational and well spelt out; If algorithm has 
elements of sketch construction of missing image 
parts; Title of studies and abstracts were also 
bases on which selection was made. 

The data extracted from each publication are the: 
title, author, year, country of lead author, 
reference, algorithm/method (methodology), 
strengths, weaknesses/limitations, programming 
language, dataset, publication quality, description 
and year. Categorization of collected data gotten 
from the final publication sample was based on 
some performance metrics. 

In other to derive a list of categories to help in the 
classification of the performance metrics, a 
thorough review was done. Eleven (11) 
categories were initially identified; this was further 
merged to seven (7) major ones as presented in 
section 3.1. 
As selection approached final stage, full texts of 
the finally selected papers were thoroughly read 
and analyzed. 

3. RESULTS

As presented in Figure 2, 455 potentially relevant 
studies were identified using the final search term 
as stated in 2.1. Titles were reviewed using the 
exclusion criteria and that led to the exclusion of 
242 studies. The abstracts of the remaining 213 
articles were then reviewed and 77 irrelevant 
ones were removed, reducing the eligible articles 
to 134.   

We observed that out of the 134 papers, 43 were 
published in China, 26 in the UK, 19 in India and 
14 in the USA. Others are from different 
countries, but not a single one from Nigeria or 
Africa. 

We further observed that the algorithms used can 
be broadly classified into six (6) groups based on 
methodology. The grouping was done based on 
the several distinct methodologies that was used 
to solve the eminent limitations in the study. Note 
that these algorithms were used across the fine-
grained, zero-shot and low-shot categories. 
These are Convolutional Neural Network (CNN), 
Contour & Stroke Segments, Generative 
Adversarial Networks (GAN), Deep Hashing & 
Hashing, CNN Methods for 3D Shapes and 
Hybrid Models & Others.  
CNN models are trained and then reused based 
on previous results to predict the outcome of a 
process. In this case, based on user results and 
feedback, the convolutional network is 
continuously trained to predict images via user 
sketches. Contour and Stroke Segments 
however stores edges and lines of sketches in 
datasets and can predict the corresponding 
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images, this also gets better as more and more 
contours are stored on acceptable user 
feedbacks. GAN are used to generate sketches 
from images. These sketches are also stored to 
make future predictions easier. Hashing 
algorithms generate intelligent indexes that can 
predict the unknown behavior of the image 
patches, sketches, contours or edges. CNN 
methods for 3D shapes uses CNN models in the 
3-Dimensional and uses advanced deep learning 
for the retrieval of 3D models via 3D sketches. A 
hybrid models uses more than one existing 
models to develop a new one. Other models are 
the ones that appear only once or are incomplete 
or under development.

Out of the 134 research, thirty (30) studies 
explicitly focused on Convolutional Neural 
Network methods. Six (6) implicitly focused on 
sketch strokes and image contour detection 
algorithms. Table (1) contains the grouping of all 
the studies based on the methods used. 

Table 1: Image Retrieval and Construction 

Studies grouped based on their Algorithms 

Computational 

Model 

Number of 

Studies 

Studies 

Convolutional 

Neural Network 

30 [10, 11, 13, 

16, 20, 27, 

30-53]

Contour & 

Stroke 

Segments 

6  [17, 54-58] 

Generative 

Adversarial 

Networks 

4 [59-62] 

Deep Hashing 

& Hashing 

3 [8, 63, 64] 

CNN Methods 

for 3D Shapes 

6 [65-70] 

Hybrid Models 

& Others 

85 [1-7, 9, 12, 

17, 18, 22-

24, 26, 70-

138] 

3.1 Strengths and Weaknesses of existing 
Models and Techniques   

The following lists the strengths and weaknesses 
of various algorithms on sketch construction [20, 
53, 55, 59, 70]. 

3.1.1 Convolutional Neural Network 
CNN models uses neural networks inspired by 
the human brain for training. These models 
become intelligent with time due to feedbacks 
from users. 
Strengths: User sketches are analyzed on-the-fly 
and as such, photos are instantly retrieved. 
Weaknesses: It was observed that it was not yet 
tested with incremental learning and dealing with 
the ambiguity of the hand-drawn sketches still 
exists. Also, some sketches cannot be 
transformed into ideal photos. Most algorithms 
needs to be unsupervised at all level and not only 
at the category level. 
Datasets: Sketch-oriented augmented dataset, 
Sketchy [59], TU-Berlin [30, 53], COCO 

3.1.2 Contour & Stroke Segments 
These models extracts, stores and trains 
contours, edges and stroke segments from 
images and sketches respectively. 
Strengths: It allows for local features to be 
detected via densely sampled stroke points. Also, 
searching of target images with similarities to the 
contour query is possible. Images with simple 
background can be found via sketch inputs. 
Weaknesses: Issues with deformed strokes and 
contours exists in some models and model was 
not able to recognize and process these stokes. 
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Datasets: TU-Berlin [8]. A database of 1.3 million 
images. 

3.1.3 Generative Adversarial Networks 
This allows for generation of images from 
sketches and vice-versa. 
Strengths: It gives a boost to the resolution of an 
image. For sketch to image interpretation, a new 
image can be generated from a sketch with the 
help of a GAN model. 
Weaknesses: There is need to reduce processing 
time. 
Dataset: TU-Berlin, Sketchy. 

3.1.4 Deep Hashing & Hashing 
These methods learn a group of hash functions to 
map original data into compact binary codes. This 
at the same time preserves some notion of 
similarity in the Hamming or mathematical space. 
The corresponding generated binary codes are 
effective for image retrieval and highly efficient for 
large-scale data storage. 
Strengths: It has low storage consumption and 
fast retrieval speed. It allows for inter-domain 
cross-modal searches between sketches and 
images and the encoding of free-hand sketches 
with natural images. 
Weaknesses: There is need to run on larger 
datasets unsupervised. 
Dataset: Sketchy Extended, TU-Berlin Extended. 

3.1.5 CNN Methods for 3D Shapes 
This employs the usage of advanced deep 
learning for the retrieval of 3D models via 3D 
sketches. 3D CNNs uses 3D convolutional 
kernels to make segmentation predictions for a 
volumetric patch of a scan of the image that is 
being searched for. 
Strengths: The images becomes scalable in the 
spatial direction, allowing accurate image 
detection with different frame sizes. 
Weaknesses: Larger collection of 3D sketches 
are needed for training purposes. 
Dataset: SHREC13STB [65]. 

3.1.6 Hybrid Models & Others 
Hybrid models utilizes and combines the 
strengths of more than one model to produce 
newer ones. While other models appear just once 
or are still under development. There are also 
papers that reviewed and reported several 
models. 
Strengths: Enhances the performance of the 
retrieval model in terms of increased efficiency, 
leading to better accuracy. 

Weaknesses: Some hybrid models consume 
processor time. Some takes longer to run on large 
datasets. 
Datasets: ETH, Sketchy, TU-Berlin, QuickDraw 
[9], a large social image dataset containing 
100,000 images from Flickr. 

3.2. Performance Metrics for Sketch 
Construction and Image Retrieval 

Performance measurement was based on the 
following three (3) identified measures: Accuracy, 
Recall and Precision. 
Accuracy ranged from 59.47% (0.5947) to 99.4% 
(0.994), the range of Recall was from 0.201 to 
0.4772 and Precision spanned 0.334 to 0.510. 

4. DISCUSSION

In this study, we reviewed the existing studies on 
sketch based image retrieval. We observed that 
there are a lot of research efforts in this 
interesting topic, but all are from the developed 
world with very few from the developing world. 
Unfortunately, there is no single study from 
Nigeria. This is not very good because Nigeria is 
the most populated country in Africa and the 
economy is fast growing. Also, most companies 
in Nigeria have adopted ICT and many internet 
users are interested in searching for images on 
the internet.  
We also found that the methods used in the 
existing studies can be grouped into 6 categories 
based on the algorithms used. These are the 
Convolutional Neural Network, Contour & Stroke 
Segments, Generative Adversarial Networks, 
Deep Hashing & Hashing, CNN Methods for 3D 
Shapes and Hybrid Models & Others. We found 
that most of the studies used CNN. 
From our studies, CNN was proffered most and 
this might be because of the ability to learn, 
relearn and predict results which makes the 
model more robust and intelligent in the long run. 
Meanwhile, the contour and stroke segment 
models could also work great if widely embraced. 
This is because it has the ability to store 
segments of images and corresponding sketches 
with algorithms that can easily predict seen 
occurrences via keystrokes. From result, Nigeria 
been an African country and one that has a very 
high social media engagement has no paper and 
this could be as a result of the researchers not 
coming to the reality of the possibility of retrieving 
the high volume of multimedia content that are 
posted online on a daily basis. This reality 
however is scary and already an ongong problem 
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as there are difficulties already retrieving 
multimedia files from the clouds. Hence, the 
inability of researchers to get adequate support 
from research bodies, also inadequate access to 
internet facilities and constant electricity, and 
most importantly, not incorporating appropriate 
technological stacks and programming 
languages to the undergraduate curriculum are 
reasons why no paper was recorded. 
We observed that accuracy and recall were the 
most commonly reported performance metrics. 
Accuracy is a very important performance metric 
and should be reported by researchers. We 
hereby recommend that future works on 
information retrieval should report precision, 
recall and accuracy. 
The major strength of our study is that we used a 
standard method to conduct the systematic 
review. We used PRISMA which has been 
recommended as the best systematic review 
guideline. Also, we grouped all existing 
algorithms based on their theoretical background 
and modus operandi. We also identified the 
strengths and weaknesses of each category. This 
will help other researchers to easily identify which 
method is good for their use cases. 
Our study has some limitations. The first one is 
the use of only one database, Google Scholar for 
search. We used Google scholar because it is 
free and the mostly used database worldwide. 
Other databases are commercial and need 
subscription which we cannot afford for now 
because of funding constraints. It could be 
argued that the use of a single database could 
make us to miss some articles. This is actually not 
the case, because google scholar also fetches 
resources from other commercial databases, 
although, it may not give access to the full texts. 
In our case, we had access to all materials 
retrieved from google scholar. So, the chance of 
missing important article is small. 

5. CONCLUSION

In conclusion, a systematic review was carried 
out in other to examine and analyze existing 
methods that are used in retrieving images and 
the average recall as regards the retrieval and 
generation of sketches as used on various 
platforms is still not very high. We found that there 
is no single published work on this topic in 
Nigeria. We also found that CNN is the most 
widely used method. We hereby recommend that 
researchers should consider working in this area 
of research. We also recommend that probability 
or statistical based method should be considered 

in future studies. Also, personalization and 
adaptability of sketch-based image retrieval 
methods in the hypermedia layer should be 
looked at. 
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