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Abstract: 
Introduction: Multiple atlas-based parcellation model has been 
demonstrated to perform better than single atlas-based parcellation 
model in terms of accuracy of the parcellation of human brain 
Magnetic Resonance Images (MRI). The weakness of the existing 
multiple atlas-based parcellation models is that the level of accuracy 
is limited if used for ageing brain due to the presence of age-related 
changes such as atrophy. 
Aims: The aim of this study is to develop a novel multiple atlases 
selection model that ensures improved accuracy for the parcellation 
of ageing brain by combining Cost function with Similarity metric and 
Atrophy measure for atlases selection. This model is called COSA.. 
Methods:A dataset with ten brain MRI and ten atlases were used. A 
brain MRI was used one at a time as the target image while the 
remaining images constituted the source images. Using each target 
image, consensus atlases were obtained for COSA from the 
combination of cost function, similarity index and atrophy measure. 
These atlases were consequently used to parcellate the target 
image. Performance was assessed using Dice Coefficient and COSA 
was compared with existing atlases selection models.  The existing 
atlases selection models investigated were Normalized Mutual 
Information (NMI), Mutual Information (MI), Correlation Ratio (CR), 
Normalized Correlation Ratio (NCR) and Least Square Error (LSE). 
Results: Mean of Dice Coefficient: COSA = 0.7495196, NMI = 
0.7479508, MI = 0.7473333, Jaccard Index = 0.7392522, CR = 
0.7358384, NC = 0.7358043, Atrophy Measure = 0.7300867, LSE = 
0.7299367, Single Atlas =0.6830223. 
Conclusion: Results show that COSA performs better than the 
existing multiple Atlas-based models. 
Keywords: Parcellation, Atlas, Human Brain, Lobar sections, 
Magnetic Resonance Imaging 
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1. INTRODUCTION  
 
Various image processing models exist for the parcellation of human brain into lobar sections. There are 
four main and distinct lobar sections, viz. Frontal lobe, Parietal lobe, Temporal lobe and Occipital lobe and 
each section performs different functions (Figure 1). Parcellation can be done using either manual or 
automated model. Manual method is the manual labeling of images by clinical expert while automated 
model is the usage of specific algorithms to accomplish this. Although manual model by experts is very 
reliable and accurate, it’s tedious and time-consuming nature makes it less attractive. Therefore, automated 
model is preferred to manual model [1, 2]. Various image processing models have been proposed. These 
are supervised learning models (K-Nearest Neighbour Classifier, Bayesian Classifier, Algebraic 
techniques), unsupervised learning models (fuzzy C-means, K-means, and thresholding models), region 
growing models, shape and appearance models, energy-based models and atlas-based models. During 
the review of these models, atlas-based image processing model has been established to be one of the 
best of these models because it can divide objects of the same texture or objects with no border [3, 4, 5, 6, 
7, 8, 9, 10, 11, 12, 13, 14, 15].    

 
 
 

Figure 1: The Four main Lobar Sections of Human Brain 

Usage of atlas-based models usually starts with either the construction of atlases or selection of existing 
atlases. An important stage of atlas-based model is the registration of an image (whose atlas will be used 
to parcellate another image) to the image that will be parcellated. Generally, the image to be parcellated is 
called the target image while the image used for parcellation is known as the source image. Image 
registration is the process of transforming an image from one coordinate into another coordinate. The 
registration type deployed (i.e. Linear Registration) allows adjustment of maximum of 12 parameters (i.e. 
rotation, translation, scaling, and shearing on x, y, and z coordinate axes) during transformation [16, 17, 
18, 19].  In addition to the choice of image registration algorithm, it is also important to choose the type of 
atlas to use. There are two types of atlas selection approaches, viz. single atlas and multiple atlases. Single 
atlas is based on the brain of one individual while multiple atlases approach is based on brains of several 
subjects [20, 21]. Also, atlas type could be categorized into those that are selected from the population of 
subject to be parcellated and those that are selected outside the population.  

The strategy applied when multiple atlases are deployed is to generate multiple parcellations of the same 
image using these atlases and systematically combine these parcellations in a multi-classifier framework 
to get a final unique parcellation [22, 23]. It has been established that even though single or multiple atlas 
could be used, usage of multiple atlas is more accurate than using single atlas [24, 3, 4, 20, 25, 26]. 

Although, various implementations of multiple atlases model have shown improvement in the accuracy of 
parcellation results, accuracy level could be reduced when dealing with ageing brain hence new atlases 
selection methods are required to solve this problem. Any human being of age 60 years and above is 
considered to have ageing brain [27, 28, 29, 30, 31, 32]. A top research priority is the development or 
identification of an image processing model with improved accuracy for the parcellation of ageing brain. In 
this study a novel Atlases Selection Model (ASM) is developed. The proposed model combines Cost 
function with Similarity metric and Atrophy measure for atlases selection. This atlases selection model is 
called COSA atlases selection model.  
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Various image processing models have been proposed for the parcellation of human brain MR images into 
lobar sections but most of the existing models were developed for young adults. The existing atlas-based 
models are single and multiple atlas-based model. The single atlas used for single atlas-based model is 
selected from the same data set to be parcellated or from outside the data set. The ASMs used for the 
existing multiple atlas parcellation models are mainly cost functions e.g. Correlation Ratio, Least Squares, 
Mutual Information, Normalised Correlation and Normalised Mutual Information [33, 34, 35, 36, 37]. When 
these methods are deployed for the parcellation of ageing brain, they have limited accuracy due to the 
presence of age-related problems e.g. atrophy and white matter hyperintensities [38, 39, 40]. The aim of 
this study is to develop a robust multiple atlases selection model that ensures improved accuracy for the 
parcellation of ageing brain with minimum human intervention. To accomplish this aim, the following steps 
will be carried out: 

Step 1: The existing multiple Atlas-based models (i.e. Cost function models) will be used for atlases 
selection. 

Step 2: Develop an atlas-based scheme that uses similarity index for atlases selection. 

Step 3: Develop an atlas-based scheme that does atlases selection using atrophy measure. 

Step 4: Develop an atlas-based scheme that combines cost function, similarity index and atrophy measure 
for atlases selection. 

 
 

2. MATERIAL AND METHODS  
 
2.1 Materials 
 
The dataset used in this study comprises of ten high resolution anatomical (T1-weighted) brain Magnetic 
Resonance (MR) images with ten accompanying atlases of the images. These images were obtained from 
the University of Edinburgh.  
This dataset is a subset of the 700 members of the Lothian Birth Cohort 1936 (LBC1936) [41, 42, 43]. The 
surviving participants of the Scottish Mental Survey of 1947 living in the Lothian (Edinburgh) area of 
Scotland constitute the LBC1936 [44, 42]. These participants undertook some tests including detailed 
cognitive and medical assessment at the mean age of 70 years [41, 42]. 
 
 
2.1.1 Brain MRI Acquisition 
 
Brain MR imaging was performed on a 1.5T GE Signa Horizon HDxt scanner (General Electric, Milwaukee, 
WI, USA) using a self-shielding gradient set with a maximum gradient strength of 33 mT/m, and an 8-
channel phased-array head coil. The resolution of T1-weighted images is 1 mm isotropic. 
 
2.1.1 Image Pre-Processing 
 
After image acquisition, MRI whole brain images were exported in Digital Imaging and Communications in 
Medicine (DICOM) format and as 2D images. DICOM images were then converted to 3D images and in 
ANALYZE format (img/hdr) to allow full 3D image visualization and processing. The atlases, comprising of 
frontal lobe were generated by manual delineation of the frontal lobe which was done by an experienced 
Neuroradiologist. Manual segmentation was performed on T1-weighted images and the mask images of 
the frontal lobe generated as described elsewhere [4]. In summary, segmentation was done using Analyze 
Software 8.1 (Mayo Clinic, Rochester, MN) [45]. T1-weighted were transformed so that the Anterior 
Commissure – Posterior Commissure (AC-PC) line was horizontal at the midline in sagittal orientation, and 
the central fissure was vertical in both coronal and axial planes. Thresholding was then applied to remove 
dark grey elements such as meningeal tissue and signal noise from the image [4], which resulted in clearer 
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grey matter CSF boundaries. The frontal lobe was then manually delineated on coronal slices of the 
transformed and threshold image. The final outputs of the pre-processing were the masks images of the 
frontal lobes for all the subjects. The preprocessing described above was done before the current study. 
The data used for this study were mainly the masks images of frontal lobe and the accompanied T1-
weighted images. 
 

2.2 Methods 

 
2.2.1 Atlases selection using the existing multiple Atlas-based models (i.e. Cost function  
models) 
 
 
From the dataset of the ten MR images, an MR image was used one at a time as the target image while 
the remaining images constituted the source images. In order to identify the source images that are most 
structurally close to each target image, all source images are required to be aligned and it is commonly 
done by registering all the source images to each target, using jack-knifing model [24, 4, 46, 47]. The 
registration is done using FMRIB Software Library, University of Oxford, UK (FSL) tools. In jack-knifing 
model, one image in a dataset is used one at a time as the target image and the remaining images in the 
dataset are used as the source images and all the source images are aligned by registering them to the 
selected target image. A cost function is then used to compute the closeness metrics (CM) between the 
selected target image and all the source images. The values of the CM are used to assign ranks to the 
source images. If m is the number of atlases to be selected for each target image, then the m source images 
with the highest CM along with their atlases are the multiple atlases for the selected target image [24, 4, 
48]. The next step is to use each atlas to parcellate the target image one at a time. These parcellated 
images are now merged and using voting rule on the merged images, a consensus parcellated estimate 
for the target image is obtained [24]. 
 
Experiments were carried out using the existing multiple Atlas-based models (i.e. Cost Functions) and 
Figures 2 to 5 represent samples of input and output of the experiments. Figure 2 is a sample of high-
resolution MR image (a) and the corresponding atlas of the Frontal Lobe of the image (b). Single atlas 
parcellation is illustrated using Figures 3 and 4 while multiple atlas parcellation is illustrated using Figure 5. 
 
 

 

(a) 

 

 

(b) 

 

Figure 2: Sample High Resolution MR Image (a) and the corresponding Atlas of the Frontal 

Lobe (b) 
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Figure 3: Registration of Source Image to Target Image and the Application of the 

Transformation Matrix on the Atlas of Source Image. 

 
Figure 4: Parcellation of Frontal Lobe of Target Image using the Atlas of Source Image. 
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Figure 5: Multiple Atlas Parcellation of a Sample image using its five selected atlases. 

 
 
2.2.2 Atlases Selection using Jaccard Index 
 
Jaccard Index (JI) is the measure of similarity between two entities or sample sets. JI has been reported to 
be good as a measure of similarity of sample sets [49, 50, 51, 52, 53]. No work exists in literature to the 
best of the authors’ knowledge that carried out atlases’ selection usingJI. To construct this model, COSA 
usesJI. JI is referred to as “Intersection over Union” or “Jaccard Similarity Coefficient”. It can be defined as 
the size of intersection divided by the size of the union of sample sets (Equation 2.1). 

JI(𝑉, 𝑅) =
|𝑉∩𝑅|

|𝑉∪𝑅|
=

|𝑉∩𝑅|

|𝑉|+|𝑅|−|𝑉∩𝑅|
.................................................................................  2.1 

Where JI(𝑉, 𝑅) is the Jaccard Index of datasets 𝑉 and 𝑅,  0 ≤ JI(𝑉, 𝑅) ≤ 1. The greater the value of  JI(𝑉, 𝑅) 
the closer is 𝑉to 𝑅. 

Let 𝑅 represents one MR image (target image) chosen one at a time from the dataset of ten MR images 

and 𝑉represents one of the remaining nine MR images (source images). All the source images are 

registered to the target image for the source images to align. JI is computed between each chosen target 
image and each of its corresponding source images. If m is the number of atlases to be selected for each 
target image, then the m source images with the highest value of JI along with their atlases are the selected 
atlases for the chosen target image. Each of these atlases is used to parcellate the target image one at a 
time. The next step is to merge these parcellated images and use voting rule on the merged image to obtain 
the consensus parcellated images [24].  
 

2.2.3 Atlases Selection using Atrophy Measure 
 
Atrophy describes a loss of brain tissue, and it is more prevalent in ageing brain [28, 30, 31]. To the best of 
authors’ knowledge, there is no work in literature where usage of atrophy for atlases selection has been 
proposed. Atrophy can be calculated by computing the volume of a particular tissue and then dividing by 
the Intra Cranial Volume (𝐼𝐶𝑉) (Equation 2.2 and 2.3) [54]. To compute brain atrophy, COSA deploys the 
brain tissue segmentation technique as implemented in FSL to segment each of the images into the three 
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tissue classes, viz. Grey Matter (𝐺𝑀), White Matter (𝑊𝑀) and Cerebrospinal Fluid (𝐶𝑆𝐹). COSA computes 
the volumes of these tissue classes for each image in both source images and target images datasets. 
Total Brain Volume (TBV) and Intra Cranial Volume of the images are also computed. Total Brain Volume 
is the sum of the volume of Grey Matter and White Matter (Equation 2.4), while Intra Cranial Volume is the 
sum of the volume of Grey Matter, White Matter and Cerebrospinal Fluid (Equation 2.5).  

Atrophy for Grey and White Matters are computed as follows: 

𝐴𝐺 =
𝐺𝑀

𝐼𝐶𝑉
   ............................................................................................................................2.2 

Where 𝐴𝐺 is the Atrophy for Grey Matter. 

𝐴𝑊 =
𝑊𝑀

𝐼𝐶𝑉
.........................................................................................................................  2.3 

Where 𝐴𝑊 is the Atrophy for White Matter. 
The Total Brain Volume and Intra Cranial Volume are computed as follows: 
𝑇𝐵𝑉 = 𝐺𝑀 +𝑊𝑀  ..............................................................................................................  2.4 
Where 𝑇𝐵𝑉 is the Total Brain Volume, 𝐺𝑀 is the volume of Grey Matter and 𝑊𝑀 is the volume of White 
Matter. 
𝐼𝐶𝑉 = 𝐺𝑀 +𝑊𝑀 + 𝐶𝑆𝐹  ...................................................................................................  2.5 

Where 𝐼𝐶𝑉 is Intra Cranial Volume and 𝐶𝑆𝐹 is the volume of Cerebrospinal Fluid. 
To select m source images that are the atlases of each target image, the sum of 𝐴𝐺 and 𝐴𝑊 are computed 

for all images in both source and target images datasets. The m source images whose sum of 𝐴𝐺 and 𝐴𝑊 

are closest to the sum of 𝐴𝐺 and 𝐴𝑊 of a target image along with their atlases are the selected atlases for 
such target image. Each of these atlases is used to parcellate the target image one at a time. The 
parcellated images are merged and a consensus parcellated image is obtained using voting rule on the 
merged image [24]. 

2.2.3 Atlases Selection using Combination of Cost Function, JI and Atrophy Measure 
 
This method of atlases selection uses the combination of cost function, JI and atrophy measure to select 
atlases. This method is proposed in order to improve the accuracy of brain MRI parcellation of ageing 
brains. To the best knowledge of the authors, no work in literature has used this combination for atlases 
selection. In order to accomplish this method of atlases selection, COSA identifies the cost function with 
the highest value of CM between its consensus parcellated image and the atlas of the target image. This is 
the cost function whose consensus parcellated image is structurally closest to the atlas of the target image. 
The atlases used to construct the consensus parcellated image of the cost function with the highest CM 
are combined with those used for the construction of the consensus parcellated images for JI and Atrophy 
Measure. From this new set of datasets, the atlases of COSA will be selected for the target image. If m is 
the number of atlases to be selected for each target image using COSA, then the m images in the new 
dataset that are structurally closest to the target image along with their atlases constitute the atlases of the 
target image. Each of these atlases is used to parcellate the target image one at a time. The parcellated 
images are merged in order to obtain a consensus parcellated image using voting rule on the merged image 
[24]. 

2.2.5 Performance Evaluation of the Proposed Model 
 
In this study Dice Coefficient (DC) was used to assess performance and to compare the level of 
performance of the ASMs investigated with that of the proposed model. DC is a measure of similarity 
between two sets. Other methods e.g. NCR, MI, and JI can also be used to compute similarities between 
two sets [55, 56, 57]. The choice of DC as evaluation metric is because DC is the most used metric in 
validating medical volume segmentation [57]. Although NCR, MI, and JI can be used to compute similarities 
between two sets, they were used for atlases selection, but DC was not used for atlases selection. In 
addition, DC is better than JI because DC can properly handle sets with real-value or weighted sets or any 
pair of vectors but JI cannot [58]. The DC between two images A and B is denoted by 𝐷𝐶(𝐴, 𝐵)  and is 
represented by equation 3.1. 

𝐷𝐶(𝐴, 𝐵) =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
 ........................................................................................ 3.1  
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where |A| and |B| are the cardinalities of the two images (i.e. the number of pixels in each image). Dice 
Coefficient between two images is equal to twice the number of pixels common to both images divided by 
the sum of the number of pixels in each image [55, 57]. The values of DC range from 0 to 1. The higher the 
value of DC between two images, the closer the two images. The performance of an atlas selection model 
X is better than model Y, if the value of DC between the consensus parcellated image obtained from model 
X and the corresponding atlas is higher than the value of DC between the consensus parcellated image 
obtained from model Y and the corresponding atlas. 
 
In measuring the level of accuracy of ASMs, the performance level metric (equation 3.1) is used. The 
experiments focused on the parcellation of frontal lobe using brain MRI. Table 1 shows the performance 
level of various ASMs on ten brain MRI using DC as the evaluation metric. 

Table 1: Performance Level of various ASMs on ten Brain MRIs using DC as the 

evaluation metric 

Images 
Single 
Atlas Multiple atlases using cost functions                                                      

Jaccard 
Index (JI)    

Atrophy 
Measure 

Combination  
of Normal-ised 

Mutual 
Information, JI 
and Atrophy 

(COSA) 

    
Correlation 
Ratio` 

Least 
Squares 

Mutual 
Information 

Normalised 
Correlation 

Normalised 
Mutual 
Information       

1 0.6729558 0.7382275 0.7382275 0.7581789 0.7382275 0.7643540 0.7382275 0.7356983 0.7727461 

2 0.6754995 0.7555645 0.7397767 0.7555645 0.7555645 0.7555645 0.7555645 0.7439875 0.7070047 

3 0.7030021 0.7610265 0.7223458 0.7610265 0.7223458 0.7610265 0.7610265 0.7574418 0.7696763 

4 0.7054791 0.7312509 0.7312509 0.7312509 0.7312509 0.7312509 0.7229624 0.7222743 0.7181073 

5 0.6865243 0.7010146 0.7010146 0.7284227 0.7229988 0.7284227 0.7284227 0.7168340 0.7356469 

6 0.6893876 0.7381702 0.7160653 0.7531888 0.7381702 0.7531888 0.7531888 0.7391046 0.7540020 

7 0.6737958 0.7720316 0.7720316 0.7887973 0.7720316 0.7887973 0.7720316 0.7271628 0.7779799 

8 0.6817985 0.7010837 0.7186404 0.7010837 0.7186404 0.7010837 0.7010837 0.7038057 0.7328400 

9 0.6735721 0.7307211 0.7307211 0.7491171 0.7307211 0.7491171 0.7307211 0.7260024 0.7490728 

10 0.6682078 0.7292933 0.7292933 0.7467024 0.7280920 0.7467024 0.7292933 0.7285557 0.7781199 

Mean 0.6830223 0.7358384 0.7299367 0.7473333 0.7358043 0.7479508 0.7392522 0.7300867 0.7495196 

 
 
 

3. RESULTS AND DISCUSSION 
 
 

3.1 Atlases Selection using Jaccard Index (JI) 
 
JI was compared with Cost Functions and Single atlas for atlases selection and the result obtained is 
highlighted in Figure 6. In Table 1, the average DC for the dataset using JI for atlases selection is 
0.7392522. This performance is better than that of CR (DC = 0.7358384), NCR (DC = 0.7358043), LSE 
(DC = 0.7299367) and Single atlas (DC = 0.6830223). The average DC when JI is used for selection is less 
than those of NMI (DC = 0.7479508) and MI (DC = 0.7473333) because when standing alone, atlases 
selection using JI may not yield the best result.  

3.2 Atlases Selection using Atrophy Measure 
 
Atrophy Measure was compared with Cost Functions and Single atlas for atlases selection and the result 
obtained is shown in Figure 7. In Table 1, Atrophy measure for atlases selection performs better than LSE 
(DC = 0.7299367) and Single atlas (DC = 0.6830223). However, the performance of Atrophy measure (DC 
= 0.7300867) is not as good as those of NMI (DC = 0.7479508), MI (DC = 0.7473333), CR (DC = 0.7358384) 
and NCR (DC = 0.7358043). This is due to the fact that when used alone for atlases selection Atrophy 
measure may not produce the best result, even though it accounts for atrophy in ageing brain.  
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Figure 7: Average DC using Cost Functions, Single Atlas and Atrophy Measure for Atlases 

Selection 
 

3.2 Combination of Normalised Mutual Information (NMI), JI and Atrophy Measure for 
Atlases Selection (COSA) 
 
Combination of NMI, JI and Atrophy Measure was compared with Cost Functions and Single atlas for 
atlases selection and the result obtained is highlighted in Figure 8. In Table 1, the average DC for the 
dataset when COSA model is used for atlases selection is 0.7495196. This performance is the best when 
compared with NMI (DC = 0.7479508), MI (DC = 0.7473333), CR (DC = 0.7358384), NCR (DC = 
0.7358043), LSE (DC = 0.7299367) and Single atlas (DC = 0.6830223). 

 

 

Figure 8: Average DC using Cost Functions, Single Atlas and COSA model for Atlases 

Selection 

 

 
4. CONCLUSION 
 
The aim of this study was to develop a novel atlases selection method for improved parcellation of brain 
MRI. The model developed is called Cost function with Similarity metric and Atrophy measure (COSA). 
COSA was implemented on parcellation of frontal lobe using brain MRI. Performance was measured using 
DC and the performance of COSA was compared with the existing multiple Atlas-based models (i.e. Cost 
function models) and Single atlas model. 
 
A summary of results obtained show that COSA performed better than the existing multiple Atlas-based 
models and Single atlas model. The DC of COSA is greater than the DC of each of the existing multiple 
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Atlas-based models and Single atlas model. This shows that the degree of overlap of COSA is better than 
each of the existing multiple Atlas-based models and Single atlas model. Our model (i.e. COSA) is better 
than the existing multiple Atlas-based models and Single atlas model due to introduction of new methods 
of atlases selection. These methods are the usage of atrophy measure and JI for the selection of atlases.  
 
Atlas based parcellation model have been previously reported [4] to underperform on ageing brain because 
of age related changes like atrophy. Our method performs better because it considers age related problem 
during atlases selection. This is intuitive because a method that does not consider age related changes 
would not normally correct for such changes during processing. 
 
Our results were compared with the methods proposed by [59], [60], and [61] in the segmentation of the 
hippocampus of some Internet Brain Segmentation Repository (IBSR) datasets. The DCs were [59] = 0.59, 
[60] = 0.74, and [61] = 0.70. We also compared our results with these three proposed methods in the 
segmentation of caudate nucleus of the IBSR datasets. The DCs were [59] = 0.0.65, [60] = 0.74, and [61] 
= 0.76. Virtually all the results indicated that COSA performs better than all the proposed methods. 
However, the DC of [61] during the segmentation of caudate nucleus was higher than that of COSA. This 
difference may be attributed to some factors: our datasets are different from those used for their 
experiments (IBSR), the segmentation carried out using the three methods were done on sub-cortical 
structures (i.e. hippocampus and caudate nucleus) whereas our model carried out parcellation of a lobar 
section of  the brain (i.e. frontal lobe). The sub-cortical structures have clear borders while the lobar sections 
do not have clear borders. Our model is atlas-based model and it has an advantage over the three methods: 
it is able to divide objects of the same texture or objects with no border [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 
14, 15]. 
 
The strengths of our proposed models are derived from some factors. These factors include the availability 
of ground truth, introduction of atrophy measure and objective selection of atlases. 
Assessment of percellation algorithm is normally limited by the lack of ground truth. This is because ground 
truths are always difficult to get because an expert is required to generate them. In our study, we had access 
to the ground truth. We used the ground truth generated by a Neuroradiologist. This suggests that our 
results can be trusted.  
 
The second strength is the introduction of atrophy-based selection. Ageing brain is normally affected by 
age related changes such as atrophy and the presence of white matter hyperintensities [4]. The existing 
atlas-based models do not consider those changes as we did in our study. This approach makes the 
proposed method unique and our result shows that the proposed method is very promising because it 
performed better than those methods that do not consider atrophy during percellation.  
 
The third strength of this study is the objective selection of atlases. Existing methods always use one or a 
set of representative atlases. Representative atlases are not good because atrophy can occur in any part 
of the brain thereby making it difficult to identify a single brain (or a set of brains) that will be truly 
representative. We used multiple atlases. Each set of atlases was empirically selected by performing many 
experiments to ensure that the age-related brain changes are well captured. This suggests that our method 
is not only reproducible, but can also be trusted. 
 
The study has some limitations. One, we used linear registration for aligning the images. Linear registration 
is known to underperform in comparison with non-linear registration because linear registration is restricted 
to a maximum of 12 affine transformation [62, 17, 18, 19].  We could not use Non-linear registration because 
of lack of computational resources (i.e. server of high processing power). However, our target was to build 
a model that will improve percallation by considering atrophy selection. The aim of the study was achieved 
because the proposed algorithm performed better than the existing models. We are convinced that the use 
of non linear registration will further improve our model and that is noted for future research.  The second 
limitation is the sample size. We used only ten anatomical MR images along with their corresponding 
atlases. This was due to the fact that we do not have access to more images. We would have manually 
segmented more images and obtain their ground truths, but we do not have the expertise to do so at the 
current time. Even if we decide to make use of the services of radiologist, we do not have the appropriate 
images that could be used to carry out such exercise. Future work should consider using more images. The 
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third limitation of the study is the use of foreign images. We could not use local images (images acquired 
in Nigeria) because of lack of funds. There are very few 1.5 Tesla (1.5T) MRI scanners in Nigeria and the 
cost of acquisition of images from these scanners is enormous. Future research should consider acquiring 
images in Nigeria. 
 
In conclusion, Atlas-based models that use combination of atrophy measure, JI and cost functions perform 
better than the existing multiple Atlas-based models (i.e. Cost function models) and Single atlas model. 
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