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Abstract: 
Introduction: The variation of the ionosphere is mostly studied using 
the critical frequency of the F2-layer (foF2) whose values can also be 
predicted by an ionospheric model. The widely used model for 
predicting ionospheric parameters is the International Reference 
Ionosphere (IRI). 
Aim: This study focuses on evaluating the IRI-2016 model's 
performance in predicting the critical frequency of the F2-layer at 
equatorial stations during two extreme phases of solar cycle 22.  
Methods: Experimental foF2 data from 1989 (Maximum Phase of 
Solar Activity) and 1986 (Minimum Phase of Solar Activity) at 
Ougadougou (Geomagnetic Latitude 0.59 oN, Geomagnetic 
Longitude 71.46 oE) in the African longitudinal sector and Manila 
(Geomagnetic Latitude 3.4 oN, Geomagnetic Longitude 191.1 oE) in 
the Asian longitudinal sector, along with IRI-2016 predictions, were 
analyzed and categorizing into four seasons and considering various 
diurnal periods of the day. 
Results: The results indicate that the IRI-2016 model exhibits both 
overestimation and underestimation of foF2 values at different times, 
with more significant discrepancies during the post-midnight hours 
and during the equinox and solstice seasons. However, the seasonal 
mean values of the IRI-2016 model show improvement, closely 
matching observed foF2 values at the two stations. 
Conclusion: The IRI-2016 model, discrepancies are more 
pronounced in MPSA year than MnPSA year. The URSI option 
excels over the CCIR option, with closer predicted values to observed 
values. Both options perform better in the Asian longitudinal sector 
compared to the African sector. 
Keywords: Critical Frequency, F2-Layer, International Reference 
Ionosphere, Solar Activity, URSI, CCIR 
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1. INTRODUCTION 
 
The F2-layer is the most conspicuous and crucial of all the ionospheric layers for radio propagation 

phenomena [1]. Solar radiation has a big impact on it. Low latitudes have concentration that do not drop off 

continuously throughout the night and even rises occasionally [2]. The F2-layer, which is present 24 hours 

a day in all solar-terrestrial conditions, is the most significant layer in the ionosphere. Even though the F2 

layer exhibits anomalous behavior, it is still thought to be the layer that contributes the most electrons to 

the entire ionosphere. Ionization drift motions in the earth's magnetic field, which are principally driven by 

electromagnetic E x B forces, are the cause of the F2 layer's abnormal behavior (1-3).  

Numerous studies on variations in the ionospheric F2 layer critical frequency (foF2) range from those that 

are focused on a small number of stations, a single station, or a sector, to those that looked at specific 

parameters over a large geographic area. These studies include [4], [5], [6], [1], [7], [8], [9], and [10] as few 

examples. Recent studies on the F2-layer critical frequency variability of the ionosphere and comparisons 

with IRI-models have been conducted. These studies differ in the specific ionospheric parameter being 

studied, the latitude or longitudinal sector taken into consideration, and the solar cycle dispersion of the 

data employed. Some of these studies include those of [11,12], [13], [14 ,15], [34], [17,18], [19, 20], [21], 

[22 – 24], [25], [26],[27- 29], [30].  

Ionospheric models, like the International Reference Ionosphere (IRI) model, are intricate mathematical 

simulations of the Earth's ionosphere that seek to forecast its behavior in response to various input 

parameters. As new information and advances in space science become accessible, these models are 

regularly improved and updated. With more than 50 members from various countries, the International 

Union of Radio Science (URSI) and the Council on Space Research (COSPAR) collaborated to create the 

IRI. The IRI model, which is accessible through the IRI portal, is continually being built and improved by the 

IRI working team [31], [32 – 36]. 

During both the maximum and minimum phases of Solar Cycle 22, it would have been vital to gather 

comprehensive and good observational data over equatorial areas. This would require measurements of 

electron density, critical frequencies, scintillations, and other ionospheric features in order to facilitate 

detailed analysis and modeling attempts. Along with testing and improving current models using available 

data, developing models that can effectively depict the intricate ionospheric dynamics throughout different 

solar activity phases might have been the objective. In order to demonstrate how well the current 

International Reference Ionosphere (IRI-2016) model performs, in predicting the variation of the critical 

frequency of the F2-layer (foF2) over two equatorial stations during Maximum Phase of Solar Activity 

(MPSA) year (1989), and Minimum Phase of Solar Activity (MnPSA) year (1986) of solar cycle 22, this 

paper uses data from two equatorial stations [21]. 

 
2. MATERIAL AND METHODS 
 
The data used are the mean hourly foF2 experimental data observed at Ougadougou (OUG) monthly, 
Geomagnetic Latitude 0.59 oN, Geomagnetic Longitude 71.46 oE in the African longitudinal sector; and 
Manila (MAN), Geomagnetic Latitude 3.4 oN, Geomagnetic Longitude 191.1 oE in the Asia longitudinal 
sector, during the MPSA year (1989) and MnPSA year (1986) respectively. The IRI-2016 model predicted 
foF2 data for each year. Zurich Sunspot number (Rz) data was used as index for the level of solar activity 
for each of the years. The observed foF2 ionosonde data and Rz data were obtained from the Space 
Physics Interactive Data Resource (SPIDR) website (http://spidr.ionosonde.net/) which was last accessed 
on the 14th of March, 2017, before the site became unavailable, while the current IRI-2016 model data used 
in this study were obtained from the Community Coordinated Modelling Centre (CCMC) IRI website: 
 (https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php).   
Analysis were carried out by first grouping the foF2 data of both observed and IRI-2016 model values into 
four different seasons comprising of three months each and was averaged. The seasonal mean of the IRI-

https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php
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2016 modeled foF2 values were compared with the experimental or observed foF2 data. Furthermore, 
percentage deviation of the model from the experimental data were evaluated using equation 1.  
 

% 𝐷𝑒𝑣 = (
𝑓𝑜𝐹2𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑− 𝑓𝑜𝐹2𝐼𝑅𝐼

𝑓𝑜𝐹2𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑

) × 100     (1) 

This was done for the two stations for the two extreme solar phases. Thereafter, seasonal plots and plots 
of the percentage deviations against local time (LT) in hour (h) were plotted and discussed. 

3. RESULTS AND DISCUSSION 
 
3.1 Seasonal variation of Observed foF2 with IRI-2016 Modeled foF2 during Maximum Phase of Solar 
Activity (MPSA) Year 
 
Fig. 1 – 2 (a) – (d) highlights the comparison plots between the observed foF2 and IRI - 2016 model (URSI 
and CCIR options) during the MPSA year (1989). The error bars on each of the observed plots in the figures 
indicate the respective standard deviation about the mean for each of the seasons. At the two stations, the 
diurnal variations of predicted foF2 values of the IRI-2016 model (URSI and CCIR options) showed the same 
trend with those observed by ionosonde measurements. The observed response at the two stations 
revealed a better fit with both IRI-model options during all the seasons although the observed foF2 data 
were underestimated and overestimated at some time of the day and night by both options of the IRI-2016 
model prediction. However, most of this overestimation and underestimation by the IRI-2016 model falls 
within the range of the error bar (standard deviation) of the measured data, implying very little disagreement.   

 

 

 

 

At Ougadougou (African longitudinal sector) during the MPSA year, both options of the IRI-2016 model 
show good agreement to a large extent with the observed foF2 during all seasons. However, both the URSI 
and CCIR options of the model overestimated the observed foF2 at Ougadougou between (00:00 – 05:00 

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

OUG

fo
F2

 (M
H

z)

MPSA

DECEMBER SOLSTICE

(a) (b)

MPSA 

MARCH EQUINOX

 OBS

 URSI

 CCIR

fo
F2

 (M
H

z)

Local Time (h)

MPSA

JUNE SOLSTICE

(c)
(d)

Local Time (h)

MPSA

SEPTEMBER EQUINOX

Fig. 1: Comparison plot between Observed foF2 and IRI-2016 Model (URSI and CCIR Options) 
for Maximum Phase of Solar Activity (MPSA) year 1989 at Ougadougou during (a) December 
Solstice (b) March Equinox (c) June Solstice and (d) September Equinox. The error bar in each 
of the plot indicates standard deviation about the mean for each of the season. 
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LT) in June solstice and between (20:00 – 23:00 LT) in March equinox.  The CCIR option overestimated 
the observed foF2 values between (21:00 – 23:00 LT) in June solstice, March equinox and September 
equinox, respectively, as seen in Fig.1 (a) – (d). 

 

 

 

 

 

From (Fig. 2 (a) – (d), at Manila (Asian longitudinal sector), the IRI-2016 derived foF2 and observed foF2 
fit reasonably well for all seasons during MPSA year with very little patches of overestimation and 
underestimation. Nevertheless, the IRI-2016 model overestimated the observed foF2 between (16:00 – 
22:00 LT) in December solstice and March equinox respectively. [23], reported comparable observations 
while working with IRI-2012 model at another station, but with different sets of data. 

3.2 Seasonal Variation of Observed foF2 with IRI-2016 Modeled foF2 during Minimum Phase of Solar 
Activity (MnPSA) Year 
 
Fig. 3 – 4 (a) – (d) revealed the comparison plots between the observed foF2 and IRI - 2016 model (URSI 
and CCIR options), and the error bar on each of the observed plots in all the figures indicates as explained 
in section 3.1 above.  Generally, at the two stations, the diurnal variation of predicted foF2 values of the IRI-
2016 model with (URSI and CCIR options) show similar trend with those observed by ionosonde 
measurements. For the MnPSA year, the observed response at Ougadogou and Manila revealed an 
improved fit with the two options of the IRI-2016 model during all the seasons. Although the foF2 data were 
observed to have some patches of underestimation and overestimation at some time of the day and night 
by both options of the model. These overestimation and underestimation by the IRI-2016 model 
nevertheless as earlier explained, fall within the standard deviation range in the observed data, implying 
very little disagreement [2]. 
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Fig. 2: Comparison plot between Observed foF2 and IRI-2016 Model (URSI and CCIR Options) for 
Maximum Phase of Solar Activity (MPSA) year 1989 at Manila during (a) December Solstice (b) March 
Equinox (c) June Solstice (d) September Equinox. The error bar in each of the plot indicates standard 
deviation about the mean for each of the season. 
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At Ougadougou during MnPSA year, both options of the IRI-2016 derived foF2 showed good agreement 
with the observed foF2 for all seasons at both stations Fig.3 (a) – (d). However, both model options 
underestimate the observed foF2 values between (00:00 - 00:04 LT) and (08:00 – 23:00 LT) in June solstice 
and March equinox. 
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Fig. 3: Comparison plot between observed foF2 and IRI-2016 model (URSI and CCIR options) for 
Minimum Phase of Solar Activity (MnPSA) year 1986 at Ougadougou during (a) December Solstice, 
(b) March Equinox, (c) June Solstice and (d) September equinox seasons. The error bar in each of 
the plot indicates standard deviation about the mean for each of the season. 

 

Fig. 4: Comparison plot between observed foF2 and IRI-2016 model (URSI and CCIR options) for 
Minimum Phase of Solar Activity (MnPSA) year 1986 at Manila during (a) December Solstice, (b) March 
Equinox, (c) June Solstice and (d) September equinox seasons. The error bar in each of the plot 
indicates standard deviation about the mean for each of the season. 
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While at Manila, the IRI 2016 model and observed foF2 fit well for all the seasons. However, some levels 
of underestimation were observed between 00:00 – 04: 00 LT and 12:00 – 16:00 LT, in December solstice, 
between 12:00 – 16:00 LT, 09:00 – 11:00 LT and 13:00 - 23:00 LT, in March and 13:00 - 16:00 in September 
equinox Fig. 4 (a) – (d). 

The above discrepancies observed in Fig. 1 – 2(a) – (b) and Fig. 3 – 4(a) – (b) could be ascribed to the fact 
that the shapes of the electron density profile in that location are not well predicted by the IRI-2016 model 
option, possibly, due to lack of availability of data [37, 38]. Lack of available data may be responsible since 
the predictive ability of IRI model according to [11, 8] is strongly dependent on the large volume of data at 
that place where the forecast is made. In times and locations where there are few data sources, the 
predictive accuracy of IRI- model may be limited. 

Observations from Figs. 1, 2, 3, and 4 (a) – (d) also revealed two characteristics peaks (pre-noon peak and 

post- noon peak). These two peaks are found to border about a trough at around noon called noon bite-out 

(NBO) profile. The NBO profile is an equatorial and low latitude ionospheric characteristics depicting 

electron depletion caused by fountain effect indicating the presence of equatorial electrojet strength [39 – 

41], [42]. The IRI-2016 model was unable to predict this NBO profile correctly because IRI model may not 

be able to accurately account for the variation of an ionosphere driven by electrojet strength and also 

influenced by the electric field in the magnetic equator region without discrepancy [43, 26, 42].  

3.3: Percentage Deviation of Iri-2016 (URSI Option) Derived Fof2 from The Observed foF2 Values 

 
Fig. 5 – 6 (a) – (d) presents the percentage deviations of IRI – 2016 model (URSI option) foF2 from those 
of the observed foF2 data for all seasons at the two stations during MPSA year (1989) and MnPSA year 
(1986) respectively. The percentage deviations from both stations reveal pronounced positive and negative 
deviations between post-midnight/post-sunrise, pre-noon/post-noon and pre-midnight periods (00:00 – 
08:00 LT, 10:00 – 16:00 LT and 18:00 – 23:00 LT respectively. The negative percentage deviations 
observed in the plots indicates higher values of IRI-2016 model than observed- foF2 values. The reverse 
is the case for positive percentage deviations. The deviations between 9:00 – 18:00 LT are relatively close 
and follow similar patterns.  

 
Fig. 5: Percentage deviations of the IRI-2016 (URSI option) foF2 from the observed foF2 values for 
all seasons across the entire stations during Maximum Phase of Solar Activity (MPSA) year, (1989) 
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During MPSA year, the positive and negative deviations occurring between 04:00 – 07:00 LT and 18:00 – 
20:00 LT are most pronounced for all the seasons. At Ougadougou, it is up to 19% during March equinox, 
and -34% during June solstice at 06:00 LT and 05:00 LT respectively. While at Manila it is up to 18% during 
December solstice to -12% during March equinox around 04:00 LT and 19:00 LT respectively from Fig. 5 
(a) – (d).  
 

 

Fig. 6: Percentage deviations of the IRI-2016 model (URSI option) foF2 from the observed foF2 
values for all seasons across the entire stations during Minimum Phase of Solar Activity (MnPSA) 
year, (1986) 
 

From Fig. 6(a) - (d) during MnPSA year the positive and negative percentage deviations are most 

pronounced around 04:00 – 08:00 LT and 18:00 – 23:00 LT for all the seasons. At Ougadougou the 
deviation is up to 52% during March equinox to -30% during September equinox around 04:00 LT and 06:00 
LT respectively. While at Manila; it is up to 28% during March equinox to -12% during September equinox 

around 04:00 LT and 14:00 LT respectively.  
 
 

3.4 Percentage Deviation of Iri-2016 (CCIR Option) Derived foF2 from The Observed foF2 Values 
 
Fig. 7 - 8 (a) – (d) depicted the percentage deviations of IRI – 2016 model (CCIR option) from the observed 
foF2 data for all seasons at the two stations during MPSA year (1989) and MnPSA year (1986) respectively. 
The CCIR option percentage deviation also exhibits distinct positive and prominent negative deviations 
between the hours of 00:00 – 08:00 LT and around 19:00 – 23:00 LT just like the URSI option. The 
deviations between 9:00 – 18:00 LT are fairly close and follow comparable patterns for most of the seasons 
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except at December solstice in MPSA year and March equinox in MnPSA whose deviation patterns are 
different from the other seasons. 

 

Fig. 7: Percentage deviations of the IRI-2016 model (CCIR option) foF2 from the observed foF2 
values for all seasons across the entire stations during Maximum Phase of Solar Activity (MPSA) 
year, (1989) 
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to 52% during June solstice and (-18%) during December solstice around 04:00 LT and 06:00 LT 
respectively. While at Manila, the deviation was up to 30% during December solstice and (-38%) during 
March equinox, around 3:00 LT and 6:00 LT respectively. 
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Fig. 8: Percentage deviations of the IRI-2016 (CCIR option) foF2 from the observed foF2 values for 
all seasons across the entire stations during Minimum Phase of Solar Activity (MnPSA) year, (1986) 
 
 
Observation from all the percentage deviation figures above at the two stations revealed that the highest 
positive and negative deviations were observed mostly during the post-midnight hours. This may be 
attributed to the absence of solar radiation and the gas composition of the O2/N2 ratio of the F2-layer which 
hinders the rate of recombination of ions which the IRI-2016 model cannot correctly predict. [10] explained 
that the observed night increase in the foF2 variation with decreasing solar activity in terms of low reference 
value and ion loss is because at night time, the ionospheric electron density is dependent on the 
recombination rate, which is influenced by the gas compositions and the magnetic meridional winds. Also, 
[9], reported that the daytime and nighttime disparity is partially due to the lower mean values at night, 
which for related absolute variability results in a higher deviation percentage at night. 
 
The high percentage deviations observed most especially at Ougadougou in the African sector may be 
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it is also due to the strong dependence of the equatorial and low latitude ionosphere on the strength of the 

equatorial electrojet [45, 46, 19] and neutral winds [47, 48, 26]. The IRI-2016 model may not be able to 

accurately account for the variation of an ionosphere driven by these two factors without discrepancy in 

numerous physical phenomena, such as the equatorial electrojet, neutral winds, and tidal impacts, have an 

impact on the equatorial ionosphere. The nonlinear interactions between these processes make it difficult 

to adequately represent the aggregate impact of these processes in a model [47, 48, 26, 53]. Secondly, 

due to factors including solar radiation, geomagnetic activity, and seasonal changes, the equatorial 

ionosphere shows great spatial and temporal variability. In-depth knowledge of the underlying Physics is 

necessary in order to accurately assess and model this variability [45, 46, 26,43]. 

 Another reason is data availability. Data and observations are used by predictive models to calibrate and 

validate their output. In the equatorial areas, data availability can be constrained, making it difficult to 

characterize and forecast ionospheric activity with precision (32 – 33), [35], (50 – 53). Finally, discrepancy 

occurred as a result of model limitations. Models are based on specific assumptions and parameterizations 

and are simplifications of the real world. The quality of these hypotheses and parameterizations affects how 

accurate the forecasts are. The model may have difficulty in predicting changes in the equatorial ionosphere 

critical frequency if it does not adequately represent the underlying Physics or if its input data are insufficient 

(32 – 33), (50 – 53). It's vital to note that no model is perfect and that no model can anticipate ionospheric 

fluctuations with 100% accuracy due to inherent constraints. Ionospheric models like the IRI-2016 model's 

accuracy is influenced by a number of variables, including the caliber and accessibility of the input data, 

the complexity of the underlying Physics, and the parameterization and application of the model. (32 – 33), 

[47, 26, 48]. 

IRI-model forecasts are most accurate in high and mid-latitudes because of the high number of ionosonde 

stations. And are less accurate at equatorial and low latitudes where the ionosphere shows very high 

variable conditions due to lack of wide spread of ionospheric stations [6, 10, 52]. The equatorial ionosphere 

is a dynamic region with many physical processes combining to cause large fluctuations, making it a 

particularly difficult location to precisely model. Critical frequencies and other ionospheric parameters can 

change due to the equatorial ionosphere being affected by variables like solar activity, geomagnetic 

disturbances, and atmospheric dynamics [35, 32, 26], (49 – 53). 

Furthermore, observations from the figures showed that both options of the model performed better in the Asian 
longitudinal sector than in the African longitudinal sector. This may be ascribed to the following factors; 
 
(a) Data Availability and Quality: For setup, calibration, and validation, ionospheric models need precise and 

complete input data. The performance of the model could be affected by differences in data availability and 

quality between the Asian and African longitudinal sectors. Predictions may be less accurate if there are 

fewer or less trustworthy measures available in the African sector (32 – 33), [35], (52 – 53). 

 (b) Geomagnetic Activity: The ionosphere can be greatly impacted by geomagnetic activity, such as magnetic 

storms or sub-storms. Different longitudinal sectors of these disturbances may exhibit different traits and 

intensities. The model may not function as well in the African sector if the geomagnetic activity is different 

or if iits algorithms and parameterizations are more suited to the geomagnetic circumstances common in 

the Asian sector [47, 48, 26, 53]. 

 (d) Localized Ionospheric Effects: It is possible that some ionospheric effects or phenomena are more 

common in one longitudinal sector than the other. These factors, such as plasma bubbles or the equatorial 

ionization anomaly (EIA), can significantly affect the ionospheric variability. The algorithms or empirical 

formulations of the model could not generalize well to the African sector if they are designed for certain 

ionospheric phenomena in the Asian sector (51 – 53). 

(e) Model Development and Validation: Extensive investigation and cooperation with regional scientific groups 

are required for the creation and validation of ionospheric models. The IRI-2016 model may perform better 
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in the Asian sector compared to the African sector if it has undergone greater refining and validation in that 

sector, benefiting from a larger body of research and data from that region (32 – 33), [36], (50 – 51). 

 

4. CONCLUSION 

 
The study of the seasonal variation of the F2-layer critical frequency and comparison with the IRI-2016 
model during two extremes of solar activity phase of solar cycle 22 was carried out. Data from Ougadougou 
(Geomagnetic Latitude 0.59 oN, Geomagnetic Longitude 71.46 oE) in the African longitudinal sector and 
Manila (Geomagnetic Latitude 3.4 oN, Geomagnetic Longitude 191.1 oE) in the Asian longitudinal sector 
during MPSA year (1989) and MnPSA year (1986) respectively, were investigated. Seasonal mean values 
of the IRI-2016 model of both options showed remarkable improvement in predicting the observed foF2 
values at these two stations even though the IRI-2016 model underestimates and overestimates the 
observed foF2 at certain hours/seasons in these stations. The discrepancy (underestimation and 
overestimation) in the IRI-2016 model is found larger during the MPSA year than during the MnPSA year. 
The highest positive and negative % deviations were observed mostly during the post-midnight hours. The 
URSI option performs better than the CCIR option since its predicted values are much closer to the 
observed values. Both options of the model perform better in the Asian longitudinal sector than in the African 
longitudinal sector. 
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