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Abstract:
Introduction: Mathematical modeling of scientific and engineering pro-
cesses often yield Boundary Value Problems (BVPs). One of the broad cate-
gories of numerical methods for solving Boundary Value Problems (BVPs) is
the finite difference methods, in which the differential equation is replaced by
a set of difference equations which are solved by direct or iterative methods.
Aims: This research focus on the establishment of conditions that ensure
the stability and convergence of the two-step Obrechkoff method for solving
u′′ = f(t, u), a < x < b, u(a) = η1, u(b) = η2.
Materials andMethods: In this paper, we use some properties of matrices to
analyze the stability and convergence of the prominent finite difference meth-
ods - two-step Obrechkoff method - for solving the boundary value problem
u′′ = f(t, u), a < x < b, u(a) = η1, u(b) = η2.
Results: Necessary conditions for the two-step Obrechkoff method to be
convergent using the properties of matrices has been established. It has
also been shown that the method is not P-stable but has a large interval of
periodicity.
Conclusion: The necessary conditions for the two-step Obrechkoff method
to be convergent using the properties of matrices has been established. It
has also been shown that the method is not P-stable but has a large interval
of periodicity.
Keywords: Convergence, Stability, Boundary Value Problem, Obrechkoff,
Finite Difference Scheme
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1 INTRODUCTION

Numerical methods for solving boundary value problems can
broadly be categorised into the following: (i) finite element
methods, (ii) finite difference methods, (iii) shooting methods.
Amongst these categories, the finite difference methods are
widely used for the direct integration of the given problem.
Finite difference methods are linear multistep methods that
can be implicit or explicit [1]. The simplest of these category
of methods is the Cowell’s method of order two. The stability
behavior of the Cowell’s method when applied to the second-
order initial value problem u′′ = f(t, u), u(a) = u0, u′(a) = u′

0

has been studied by the authors in [2, 3]. Although there ex-
ist several Runge-Kutta type method for integrating second-
order differential equation [4], there strengths lie in their ap-
plication to initial value problems. Obrechkoff-type methods
apparently are well-suited for both initial and boundary value
problems. The simplest of the Obrechkoff-type method is
the well-known Numerov method [5, 6, 1]. Authors in the
past have constructed several Obrechkoff-type methods with
higher orders for second order initial value problems [8, 9].
In the work of [10], the asymptotic stability of linear multi-
step methods for the direct integration of second-order prob-
lems are compared with those of the methods for integrat-
ing the corresponding system of first order equations. The
P-Stability for the Obreckhoff methods with m=2,3 when ap-
plied to second order initial value problems were discussed
by the authors in [9]. In this work, using some properties of
matrices, we established the conditions that will ensure the
stability and convergence of the two-step Obrechkoff method
when applied to the boundary value problem

u′′ = f(t, u), a < x < b, u(a) = η1, u(b) = η2 (1)

2 MATERIAL AND METHODS

2.1 Some Properties of Matrices

Definition 2.1 A matrix A = (aij) is tridiagonal if aij = 0,
whenever |i− j| > 1.

Definition 2.2 A tridiagonal matrix A = (aij), is irreducible
if and only if ai,i−1 ̸= 0, i = 2, 3, ·, N and ai,i+1 ̸= 0 i, =
1, 2, · · · , N − 1

Definition 2.3 A tridiagonal matrix A = (aij), is diagonally
dominant if

|aii| =

n∑
j = 1
i ̸= j

|aij |, i = 1, 2, ·, N

Definition 2.4 A matrix A = (aij), is said to be irreducibly di-
agonally dominant, if it is irreducible and diagonally dominant
with inequality being satisfied for at least one i.

Theorem 2.5 A matrix A = (aij), is monotone if Az ≥ 0 ⇒
z ≥ 0.

The main properties of a monotone matrix are as follows:

• The monotone matrix A is nonsingular

• A matrix A is monotone if and only if A−1 ≥ 0

Theorem 2.6 If a matrix A is irreducibly diagonally dominant
and has nonpositive off-diagonal elements, then A is mono-
tone

Theorem 2.7 If the matrices A and B are monotone and B ≤
A, then B−1 ≥ A−1

3 RESULTS

3.1 Convergence Analysis

The two-step Obrechkoff method considered in this work is
of the form

un−1 − 2un + un+1 =
1

252
h2 (11fn−1 + 230fn + 11fn+1)−

1

15120
h4

(
13f

(2)
n−1 − 626f (2)

n + 13f
(2)
n+1

)
(2)

Applying (2) to (1) yields the difference scheme

−un−1 + 2un − un+1 +
1

252
h2 (11fn−1 + 230fn + 11fn+1)−

1

15120
h4

(
13f

(2)
n−1 − 626f (2)

n + 13f
(2)
n+1

)
= 0, n = 1, 2, · · · , N, (3)

and the boundary condition becomes

u0 = η1, uN+1 = η2 (4)

From the above, the exact solution u(t) of (1) satisfies

− u(tn−1) + 2u(tn)− u(tn+1)+

1

252
h2 (11f (tn−1, u (tn−1)) + 230f (tn, u (tn)) +

11f (tn+1, u (tn+1)) )−
1

15120
h4

(
13f (2) (tn−1, u (tn−1))− 626f (2) (tn, u (tn))+

13f (2) (tn+1, u (tn+1)) ) + Tn = 0

(5)
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where Tn is the truncation error. Subtracting (5) from (3), ap-
plying the Mean Value Theorem and substituting εn = un −
u (tn), the error equation is obtained as

− εn−1 + 2εn − εn+1+

1

252
h2

(
11εn−1fun−1

+ 230εnfun
+ 11εn+1fun+1

)
−

1

15120
h4

(
13εn−1f

(2)
un−1

− 626εnf
(2)
un

+ 13εn+1f
(2)
un+1

)
−

Tn = 0 n, = 1, 2, · · · , N

(6)

where the truncation error is given by

T =
59

76204800
h10u10(ξ), and

∥T∥ ≤ 59

76204800
h10 max

ξ∈[a,b]

∣∣∣u(10)(ξ)
∣∣∣ (7)

In matrix notation, (6) can be written as

ME = T (8)

where
M = J+ K+ L,

E = [ε1, ε2, · · · , εN ]
T
,

T = [T1, T2, · · · , TN ]
T
,

J =


2 −1 0
− 21 −1

− 21 −1
. . .

0 −1 2

 (9)

K =
h2

252


230fu1 11fu2 0
11fu1 230fu2 11fu3

11fu2 230fu3 11fu4

. . .
0 11fuN−1 230fuN

 (10)

L =
h4

15120



626f
(2)
u1 −13f

(2)
u2 0

−13f
(2)
u1 626f

(2)
u2 −13f

(2)
u3

−13f
(2)
u2 626f

(2)
u3 −13f

(2)
u4

. . .
0 −13f

(2)
uN−1

626f
(2)
uN


(11)

Since fun > 0, n = 1, 2, · · ·N then K+ L ≥ 0 and M =
J+K+ L ≥ J. Clearly, J is monotone. Now, the off-diagonal
elements of M are

−1 +
11

252
h2fun−1

− 13

15120
h4f (2)

un−1

and
−1 +

11

252
h2fun+1

− 13

15120
h4f (2)

un+1

, and the diagonal elements are

2 +
230

252
h2fun +

626

15120
h4f (2)

un

. In order to make M have non-negative off diagonal ele-
ments, we need to choose h such that

−1 + 11
252h

2fun−1
− 13

15120h
4f

(2)
un−1 < 0;and

−1 + 11
252h

2fun+1
− 13

15120h
4f

(2)
un+1 < 0

}
This means that h be chosen such that

−1 +
11

252
h2fu − 13

15120
h4f (2)

u < 0 over [a, b]

and

2 +
230

252
h2fun

+
626

15120
h4f (2)

un

≥
∣∣∣∣−1 +

11

252
h2fun−1

− 13

15120
h4f (2)

un−1

∣∣∣∣+∣∣∣∣−1 +
11

252
h2fun+1 −

13

15120
h4f (2)

un+1

∣∣∣∣ (12)

For the above choice of h, M is irreducibly diagonally domi-
nant and monotone. Since M ≥ J, we have that 0 < M−1 ≤
J−1. From (8), we have that

E = M−1T (13)
⇒ ∥E∥ ≤ ∥M−1∥∥T∥≤ ∥J−1∥∥T∥ (14)

≤
(
(b− a)2

8h2

)(
59

76204800
h10 max

ξ∈[a,b]

∣∣∣u(10)(ξ)
∣∣∣) (15)

=
59(b− a)2

609638400
h8 max

ξ∈[a,b]

∣∣∣u(10)(ξ)
∣∣∣ (16)

It follows that the method is of order eight and

lim
h→0

∥E∥ = 0 (17)

⇒ lim
h→0

uj = u(tj) (18)

This establishes the convergence of (2).

3.2 Stability Analysis

Theorem 3.1 A method with stability function Rmm(λ2) has
an interval of periodicity (0, λ2

0) if
∣∣Rmm(λ2)

∣∣ < 1 for 0 < λ2 <
λ2
0.

Theorem 3.2 A method with stability function Rmm(λ2) is P-
stable if

∣∣Rmm(λ2)
∣∣ < 1 for all real λ ̸= 0.

Applying (2) to the test problem

u′′ = −k2u, (19)
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results in

un−1 − 2un + un+1

− 1

252
λ2 (11un−1 + 230un + 11un+1)−

1

15120
λ4 (13un−1 − 626un + 13un+1)

(20)

where λ = kh. Rearranging and simplifying (20) gives

un−1 − 2R22un + un+1 = 0,

where

R22(λ
2) =

1− 115
252λ

2 + 313
15120λ

4

1 + 11
252λ

2 + 13
15120λ

4
. (21)

The rational expression (21) is the stability function of (2).
From the above, it is clear that the (2) is not P-stable but has

Figure 1: The stability function R22 as a function of λ2

a large interval of periodicity, i.e [0, 25.2]

4 CONCLUSION

In this work, we have established the necessary conditions for
the two-step Obrechkoff method (2) to be convergent using
the properties of matrices. In the stability analysis, we have
shown that the method is not P-stable but has a large interval
of periodicity.
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