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Abstract:
Introduction: Many problems from science and engineering are modeled by
Ordinary Differential Equations (ODEs) whose solutions describe the tempo-
ral evolution of the modeled processes. In most cases however, the arising
equations are too complex to be solved analytically. Consequently, their so-
lutions have to be approximated by numerical methods.
Aims: In this article, we propose an Explicit Fourth-Derivative two-step Lin-
ear Multistep Method (FD2LMM) for systems of first-order ordinary differential
equations.
Materials and Methods: The proposed method is constructed by using the
maximal order criteria which is obtained through the associated linear differ-
ence operator. The starting values used by the proposed method are ob-
tained by suitable single-step method.
Results: The order, consistency, linear stability, and the convergence prop-
erties of the method are discussed. Numerical experiments are performed
and the results are compared with those of existing methods in the literature.
Conclusion: Explicit fourth-derivative two-step linear multistep method
(FD2LMM) for ordinary differential equation was constructed using the order
criteria and the associated linear difference operator. The stability property
of the constructed method was also analysed. The results obtained from the
numerical examples show that accurate and efficient compared with methods
in the literature.
Keywords: Fourth-derivative, LinearMultistepMethod, Initial Value Problem,
System of equations, Stability
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1 INTRODUCTION

In this article, the first-order initial value problem in ordinary
differential equations

u′ = f(t, u), t ∈ [t0, T ] , u(t0) = η0 (1)

where f : R × Rn 7→ Rn, u, η0 ∈ Rn and t0, T ∈ R satisfies
the Lipschitz condition [1], is considered.

Several of the techniques for solving (1) are generally based
on the Taylor algorithm and are usually of the Runge-Kutta
type or classical linear multistep type [2, 1, 3, 4]. The Taylor
algorithm is one of the earliest known scheme for solving (1).
In recent time, several modifications are being to the classical
Runge-Kutta and linear multistep method which result in dif-
ferent families of methods. Some of such methods that are
obtained by a modification (the use of averages other than
the arithmetic average) of the classical Runge-Kutta method
are the methods proposed by the authors in [5, 6, 7]. How-
ever, the quest for methods with improved accuracy has been
on the increase since the work of the author in [8]. Based
on the idea of an early work, the author in [8] attempted us-
ing Multiderivative Linear Multistep Method (MLMM) with k=1
in the second derivative formulae. In the work by the au-
thors in [9], a family of second derivative Adams-type meth-
ods (SDAMs) of order up to 2k+2 (where k is the steplength)
for initial value problems was proposed. Similarly, the au-
thors in [10, 11] constructed explicit Runge-Kutta type meth-
ods involving up to second derivative. In the work of [12],
explicit Runge-Kutta schemes of stages up to four with the
first derivative were constructed. Following the work [12], a
family of Runge-Kutta type method with higher order deriva-
tives up to the second derivative was derived by the author in
[13]. Here, we analyze the construction and implementation
of explicit fourth-derivative two-step linear multistep method
(FD2LMM) for solving (1) taking into account the order criteria
and the associated linear difference operator.

2 MATERIAL AND METHODS

2.1 Construction of Method

The form of the method to be constructed in this work is

un+2 − un =

3∑
i=0

hi+1
1∑

j=0

βijf
(i)
n+j

= h (β00fn + β01fn+1)+

h2
(
β10f

(1)
n + β11f

(1)
n+1

)
+

h3
(
β20f

(2)
n + β21f

(2)
n+1

)
+

h4
(
β30f

(3)
n + β31f

(3)
n+1

)
(2)

The associated linear difference operator, L[h, γ] of (2) is ob-
tained as

L[h, γ]u(t) = u(t+ 2h)− u(t)−

h
(
β00u

(1)(t) + β01u
(1)(t+ h)

)
−

h2
(
β10u

(2)(t) + β11u
(2)(t+ h)

)
−

h3
(
β20u

(3)(t) + β21u
(3)(t+ h)

)
−

h4
(
β30u

(4)(t) + β31u
(4)(t+ h)

)
(3)

where γ := (β00, β01, β10, β11, β20, β21, β30, β31). The opera-
tor, L is dimensionless. Applying the operator L to

t, t2, t3, t4, t5, t6, t7, t8, t9

, the corresponding system of equations for the dimension-
less moments

L∗
m(γ) := h−mL[h, γ]tm|t=0 (4)

is

L∗
1(γ) := −β00 − β01 + 2 = 0

L∗
2(γ) := −2 (β01 + β10 + β11 − 2) = 0

L∗
3(γ) := −3β01 − 6β11 − 6β20 − 6β21 + 8 = 0

L∗
4(γ) := −4 (β01 + 3β11 + 6β21 + 6β30 + 6β31 − 4) = 0

L∗
5(γ) := −5β01 − 4 (5β11 + 15β21 + 30β31 − 8) = 0

L∗
6(γ) := −2 (3β01 + 15β11 + 60β21 + 180β31 − 32) = 0

L∗
7(γ) := −7β01 − 42β11 − 210β21 − 840β31 + 128 = 0

L∗
8(γ) := −8 (β01 + 7β11 + 42β21 + 210β31 − 32) = 0

L∗
9(γ) := −9β01 − 8 (9β11 + 63β21 + 378β31 − 64) = 0.

Examining the above system, we see that the system is com-
patible for the set
{L∗

1(γ) = 0, L∗
2(γ) = 0, · · · , L∗

8(γ) = 0}. Hence the maximum
M for which the system L∗

m(γ) = 0, m = 1, 2, · · ·M − 1 is
compatible is 9. Now, solving the system L∗

1(γ) = 0, L∗
2(γ) =

0, · · · , L∗
8(γ) = 0 for the coefficients

β00, β01, β10, β11, β20, β21, β30, β31

results in

β00 = 34,
β01 = −32,
β10 = 110

7 ,
β11 = 128

7 ,
β20 = 20

7 ,
β21 = − 80

21 ,
β30 = 22

105 ,
β31 = 16

35


(5)

LASU Journal of Research and Review in Science



Page 107

From the result above, the fourth-derivative two-step explicit
linear multistep method (FD2LMM) proposed in this work is

un+2 − un = h (34fn − 32fn+1)+

1

7
h2

(
110f (1)

n + 128f
(1)
n+1

)
+

1

21
h3

(
60f (2)

n − 80f
(2)
n+1

)
+

1

105
h4

(
22f (3)

n + 48f
(3)
n+1

)
(6)

3 RESULTS

3.1 Order, Local Truncation Error and Consis-
tency of The FD2LMM Method

3.1.1 Order of the FD2LMM method

:

Lemma 3.1 The FD2LMM method (2), and hence the asso-
ciated operator L∗

m defined by (4) have order p if and only
if

L∗
r ≡ 0, r = 0, 1, · · · , p, L∗

r+1 ̸≡ 0. (7)

Theorem 3.2 The FD2LMM method (6) is of order 8.

Proof:
Sincewith the coefficient values (5),L∗

m = 0 form = 0, 1, · · · , 8
and

L∗
9 := −9β01 − 8 (9β11 + 63β21 + 378β31 − 64) , (8)

substituting the coefficients (5) into (8) results in L∗
9 = 736

35 ̸=
0. Hence the FD2LMM method (6) is of order 8.

3.1.2 Local Truncation Error of the FD2LMM method

The general expression of the leading term of the local trun-
cation error (lte) for a method of the form (2) with order p can
be written in the form (see [3])

lte(t) = (−1)p+1hp+1
L∗
p+1

(p+ 1)!
Dp+1u(t). (9)

Since the FD2LMM method (6) is of order p=8, the corre-
sponding local truncation error is obtained as

lte(t) = −h9 736

35.9!
u(9)(t). (10)

3.1.3 Consistency

Theorem 3.3 The linear multistep method FD2LMMmethod
(2) is said to be consistent if it has order p ≥ 1, [3].

Lemma 3.4 The FD2LMM method (6) is consistent since it
has order p = 8 > 1.

3.2 Stability Polynomial of The FD2LMMMethod

The first and second characteristics polynomials of the FD2LMM
method (6) are respectively given by

ρ(ξ) = ξ2 − 1 (11)

σi(ξ) =

1∑
j=0

βijξ
j , i = 0, 1, 2, 3. (12)

From the above, the corresponding stability polynomial is ob-
tained as

π(ξ, h̄) = ρ(ξ)−
3∑

i=0

h̄i+1σi(ξ)

=
1

105

(
−48h̄4ξ − 22h̄4 + 400h̄3ξ − 300h̄3−

1920h̄2ξ − 1650h̄2 + 3360h̄ξ−
3570h̄+ 105ξ2 − 105

)
(13)

3.3 Numerical Results

Numerical experiments confirming the expectations regard-
ing our constructed method are presented in this section. Our
method was applied to two standard problems: a linear sys-
tem of dimension 3 and a nonlinear system of dimension 2.
These problems were studied in the literature by the authors
in [9], [14] and [15]. The results produced by our method
are compared with those produced by the methods (SDAM),
(Amodio) and (Wu-Xia) proposed in [9], [14] and [15] respec-
tively. The accuracy and efficiency of our method are demon-
strated using these examples.

3.3.1 Problem 1

Consider the following initial value problem considered by the
authors in [14] on the range 0 ≤ t ≤ 1.

u′
1 = −21u1 + 19u2 − 20u3 u, 1(0) = 1

u′
2 19= u1 − 21u2 + 20u3 u, 2(0) = 0

u′
3 40= u1 − 40u2 − 40u3 u, 3(0) = −1.
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The analytical solution of the system is obtained as

u(t)1 =
1

2
e−40t

(
e38t + sin(40t) + cos(40t)

)
u(t)2 = −1

2
e−40t

(
e38t − sin(40t)− cos(40t)

)
u(t)3 = −e−40t(cos(40t)− sin(40t)).

The problem was solved using different values of steplength
h and the maximum relative error for each step was obtained
and compared with those given in [14] and [15]. The com-
parison is presented in Table 1 and it is clear that our method
produces more accurate results than those produced in [14]
and [9].

3.3.2 Problem 2

The second problem considered in this paper is the nonlinear
system from [15] and also studied in [9],

y′1(t) = −1002u1 + 1000u2; u1(0) = 1

y′2(t) = u2 − u2(1 + u2); u2(0) = 1

(14)

The analytical solution of problem 2 is given as

u1(t) = exp(−2t)

u2(t) = exp(−t)

This problem was solved within the ranges t ∈ [0, 1] and
t ∈ [0, 10] with steplengths h = {0.008, h = 0.006} and h =
{0.002, h = 0.001} respectively. For this problem, we com-
pared the results of our method at t = 1 and t = 10 with
those obtained by the methods in [9] and [15]. From the re-
sults, it is clear that our method gave better results compare
with those produced by the method of [15]. Also, our method
compete favourably the that of the author in [9]. Details of the
comparison are presented in Table 2.

4 CONCLUSION

Explicit fourth-derivative two-step linear multistep method
(FD2LMM) for ordinary differential equation was constructed
using the order criteria and the associated linear difference
operator. The stability property of the constructed method
was also analysed. The results obtained from the numeri-
cal examples show that accurate and efficient compared with
methods in the literature.
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Relative Error
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Table 3: The absolute error of our ”FD2LMM” method compared with the ”SDAM” method at t=1 and t=10 on problem 2
Absolute Error

SDAM FD2LMM

t h u1(t) u2(t) u1(t) u2(t)

0.0081 1.6348× 10−14 0.0000× 1000 1.1102× 10−16 0.0000× 1000

0.00610 2.4815× 10−24 2.0329× 10−20 4.1359× 10−24 4.0658× 10−20
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