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Abstract:

Introduction: Many problems in science and engineering can be formulated
as ordinary differential equations. The analytical methods of solving differen-
tial equations are applicable only to a selected class of differential equations.
Quite often, equations appearing in physical problems do not belong to any
of these familiar types and one is obliged to resort to numerical methods for
solving such differential equations. Linear multistep methods are very popu-
lar for solving first order initial value problems.

Aims: In this paper, the optimal 8—step linear multistep method for solving
y' = f(z,y) is constructed and implemented.

Materials and Methods: The construction was carried out using the tech-
nique based on the Taylor expansion of y(z + jh) and y'(« + jh) about « + th,
where t need not necessarily be an integer.

Results: The consistency, stability and convergence of the proposed method
are investigated. To investigate the accuracy of the method, a comparison
with the classical 8-stage Runge—Kutta method is carried out on two numeri-
cal examples.

Conclusion: In this work, the procedure for the construction of an optimal
8-step linear multistep method for first-order differential equations has been
presented. The constructed method is consistent and zero-stable. Hence it
is convergent. The accuracy of the method compared with the well-known
Runge-Kutta method is demonstrated by its application to two test problems.
Keywords: Linear Multistep Method, Optimal, Consistency, Stability, Con-
vergence, Accuracy
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1 INTRODUCTION

Many problems in science and engineering can be formulated
as ordinary differential equations. The analytical methods of
solving differential equations are applicable only to a selected
class of differential equations. Quite often, equations appear-
ing in physical problems do not belong to any of these familiar
types and one is obliged to resort to numerical methods for
solving such differential equations. Linear multistep methods
are very popular for solving first order initial value problems.

Traditionally, they are used to solve higher order ordinary
differential equations by first reducing them to a system of
first order. This approach has been extensively discussed in
[1, 2, 3]. However, the method of reducing to a system of first
order has some serious drawback which includes wastage
of human effort and computer time [4]. The general k-step
method or linear multistep method of step number k is given
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which established the consistency of (f)). Since (B) is a poly-
nomial of degree 8, it must have another real root on the unit
circle. In order for (g) to be zero—stable, the this other real
root must be -1 and the remaining 6 roots must be complex.

Thus we have

gl - +17 §2 = _17 53 = ei«91’ €4 = e_i917 (5)
= G=e" G=eP =" [0
0<61,05,03 <7
Therefore,
p€) = (€= 1) (E+1) (£ —€) (€ —e ™) x
0 —16 0 —10: (6)
(=) (E—eT) (§—eP) (§—e7™)

which upon simplification results in

p(€) = €84+ ¢7 (—2cos (1) — 2cos (f2) — 2cos (63)) +

as &’ (4cos (01) cos (02) + 4 cos (63) cos (02) + 4 cos (61) cos (03) + 2) +
k k £° (—8cos (=) cos (f3) cos (61) — 2cos (01) — 2cos (h2) — 2cos (03)) +
Zajynﬂ- = hzﬁjy;z+j7 (1) €% (8 cos (82) cos (B3) cos (61) + 2cos (61) + 2cos (02) + 2cos (63)) +
=0 =0 2 (—4cos (1) cos (02) — 4cos (A3) cos (02) — 4 cos (A1) cos (63) — 2) +
where o; and §; are uniquely determined. The linear mul- € (2008 (1) + 2c0s (62) + 2 cos (03)) — 1.

tistep method in equation (i) generates schemes which are
used to solve first-order ordinary differential equations. Vari-
ous form of this Linear multistep method has been developed
[3, 2, 5, B]. Other researcher like the author in [g] derived a 6-
step linear multistep method of order 8. The derived scheme
was compared with the analytic method. In this study, we
shall develop an optimal 8-step linear multistep method of or-
der 10 for the solution of ordinary differential equation using
Taylor series as the basis function.

2 MATERIAL AND METHODS

2.1 Construction of Proposed Method

The form of the linear multistep method to be constructed in
this work is

k=8 k=8
Z QiYnti = h Z Bilhti- (2)
=0 =0
Associated with (f)) is the first characteristics polynomial
k=8
o6 = Y aig (3)
=0

In order to make () an optimal method, all the roots of (B)
must lie on the unit circle in the complex plane. With £ =1
as a root of p(¢) = 0, we have that

k=8
Z%’ = 0, 4)
i=0

(7)
Setting cos (61) = A1, cos (A2) = Ay and cos (A3) = As in @)
and comparing the coefficients of powers of £ in the resulting
expression with (B), we obtain

ag = +1,

a7 ==2(A + A2+ A3),

g = 4XAoAg + 4\ ()\2 + )\3) + 2,

as = —2(Xa+ A3+ A1 (X3 + 1)),
Qy = 0

a3 — 2 ()\2 + )\3 + /\1 (4)\2>\3 + ].)) s
ag = =2 (233 + 201 (A2 + A3) + 1),
a; =2(M\ + A2+ A3),

Qo = -1

Since the stepnumber = k = 8 is even, we now require that
the proposed optimal method have order k + 2= 10. Thus, the
order requirement (see [2]) with =4 in terms of the coefficients



gives

Bo+B1+ P2+ B3+ Ba+ Bs+ B+ Br+ Bs =
—16(A —1) (A2 —1) (A3 —1)
480 + 3081 + 2P2 + B3 = B5 + 2P + 357 + 455
3(1680 4 981 + 4P + B3 + B5 + 466 + 987 + 168s) =
C16/(TAs + Ao (7 — 4hs) + A (he (Ag—

4) — 4\g +T7) — 10) + 6480 + 2751 + 802 + B3 —
Bs + 886 + 27P7 + 6408
128005 + 40581 + 8082 + 583 + 585 + 8085+
40557 + 128085 = 16 (—61X3 + As (16A5 — 61) +
At (—Xo (Ag — 16) + 163 — 61) + 136)
102430 + 24301 + 3282 + B3 = B5 + 3206 + 24387 + 102433
9867280 + 51035, + 44855 + TBs + 7f5 + 44886+
510387 + 2867285 = (—547\3 + Ay (643 — 547) +
A1 (=2 (A3 — 64) + 64\3 — 547) + 2080)
1638450 + 218751 + 12862 + B3 =
B85 + 1288 + 218787 + 16384
5898248, + 5904951 + 230485 + 955

+ 985 + 230406 + 590493, + 5898245 —
16 (—4921); + Ao (256)3 — 4921)

+ A1 (=2 (A3 — 256) + 256X — 4921) + 32896)
262144 + 1968341 + 5128 + 3 =
B85 + 5128 + 196833, + 26214405

Solving the above system of equation, we get

1
Tarrs (M (188 4525 + X2 (52 + 2303)) +
2(1991 + 94X3 + Aa (94 + 26X3)))
~1
b=
A1 (4922 + 448)X3 + Ao (448 + 167)\3))))

Bo =
(2 (—11552 + 4922X3 + A (4922 + 448)3) +

1
Ba = T (4 (1819 — 948405 + X (—9484 + 5494);) +

A1 (—9484 + 54943 + Ao (5494 + 701)\3))))
1

B3 = Tyy7s (M1 (~27268 + Ao (70528 — 6378)3) + 70528Xs) +
4(19312 — 6817A3 + A2 (—6817 + 17632)3)))
-1
Bs = ——— (2(—358 + Ao (7708 — 4348)3) + 77083+

2835
A1 (7708 — 43483 + Ay (—4348 + 1390373))))
(10)
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Bs = Typ7s ((-27208 + Ao (70528 — 46378)3) + 70528)3) +

A4 (19312 — 6817A3 + Ao (—6817 + 17632)3)))

Bs = 11175
A1 (—9484 + 54945 + \o (5494 + T01)3))))

o= 10
M (4922 + 4483 + Ao (448 + 167)\3))))

(4 (1819 — 9484\3 + Ao (—9484 + 5494)3) +
(2 (—11552 + 4922)3 + Ao (4922 + 448)3) +

Bs = Typme (M1 (1884 52X + X2 (52 +23X3)) +

2 (1991 + 94X3 + Ay (94 + 26)3)))
(1)

Following [2], the expression for the error constant (Ite) asso-
ciated with this method is given by

lte =

Gana5g (4 (3055 + Ao (124X + 305) + 1246)

— A1 (496X3 + A2 (263A3 + 496) + 1220))

(12)

The choice of values of A1, A2, and \s is critical to the zerosta-
bility of (B). To ensure zero-stability of the method, we choose
the following values: A\; = ==, Ay = 0, \3 = — 7. The above
choice makes () to be zerostable. Substituting the values of
A1, A2, and A3 into ofs and S.s, we get the resulting scheme

3956 £ 23552f 3712 372
Yn+s —Yn = ppgp e s ot T gy St
41984 3632 41984

13
Ta17s 3~ aggs Irr ¥ qprs SreeT (13)
3712 3712 23552 28552 3956 395
14175746 175 T T g7 s

Since the order p=10 of the method is greater than one and
the method already is zerostable, then the method ({3) is
convergent. We shall refer to the new method as (Opt8sM).

3 RESULTS

3.1 Computational Analysis

The aim of the computational analysis carried out in this sec-
tion is to investigate the accuracy and efficiency of the pro-
posed method compared with some existing methods. The
proposed scheme is implemented on two problems that have
been studied in the literature [[7]. Since our proposed method
is of an 8-step method, then it becomes logical to compare it
with method of equivalent stage hence, the choice of explicit
8-stage Runge-Kutta (ES8RK) method.

3.1.1 Problem 1

Consider the linear problem

y(@) = z+y, y(0)=1 x¢€l0,1]



with exact solution

y(x) = 2exp(z) — — 1;

3.2 Problem 2

The second problem considered in this work is given as

y'(z) = 2%y, y(0)=1 =z€0,1]

with exact solution

y(z) = exp (;x)

4 CONCLUSION

In this work, the procedure for the construction of an opti-
mal 8-step linear multistep method for first-order differential
equations has been presented. The constructed method is
consistent and zero-stable. Hence it is convergent. The ac-
curacy of the method compared with the well-known Runge-
Kutta method is demonstrated by its application to two test
problems.
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Table 1: The absolute error of the proposed Opt8sM method compared with (ESRK) with steplength h=0.1

tn | Yewact(tn) | ES8RK(t,) | Opt8sM(t,) | Abs. Error ESRK (t,) | Abs. Error Opt8sM (t,)
0.8 | 2.6510819 | 2.6510819 | 2.6510819 7.2495787E-11 2.1316726E-11
0.9 | 3.0192062 | 3.0192062 | 3.0192062 9.0135899E-11 2.4826807E-11
1. | 3.4365637 | 3.4365637 | 3.4365637 1.1068435E-10 3.8390624E-11
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Table 2: The absolute error of the proposed Opt8sM method compared with (ESRK) with steplength h=0.0625

tn Yevact(tn) | E8RK(t,) | Opt8sM (t,) | Abs. Error ESRK (t,) | Abs. Error Opt8sM(t,)
0.5 1.7974425 | 1.7974425 | 1.7974425 2.1573854E-12 4.3032244E-13
0.5625 | 1.9476093 | 1.9476093 | 1.9476093 2.5839331E-12 5.6310512E-13
0.625 | 2.1114919 | 2.1114919 | 2.1114919 3.0562219E-12 9.1393559E-13
0.6875 | 2.2899749 | 2.2899749 | 2.2899749 3.5784709E-12 9.7699626E-13
0.75 2.484 2.484 2.484 4.1553427E-12 1.458389E-12
0.8125 | 2.6945696 | 2.6945696 | 2.6945696 4.7921667E-12 1.6253665E-12
0.875 | 2.9227506 | 2.9227506 | 2.9227506 5.4933835E-12 2.0223823E-12
0.9375 | 3.1696789 | 3.1696789 | 3.1696789 6.2660988E-12 2.4273916E-12
1. 3.4365637 | 3.4365637 | 3.4365637 7.1151973E-12 1.085354E-12

Table 3: The absolute error of the proposed Opt8sM method compared with (ESRK) with steplength h=0.05

tn | Yezact(tn) | ESRK(t,) | Opt8sM(t,) | Abs. Error ESRK (t,) | Abs. Error Opt8sM (t,)
0.40 | 1.021563 | 1.021563 1.021563 2.384759E-13 1.317613E-12
0.45 | 1.030841 | 1.030841 1.030841 3.397283E-13 1.762591E-12
0.50 | 1.042547 | 1.042547 1.042547 4.691803E-13 2.304823E-12
0.55 | 1.057025 | 1.057025 1.057025 6.317169E-13 3.035128E-12
0.60 | 1.074655 | 1.074655 1.074655 8.333334E-13 3.981260E-12
0.65 | 1.095862 | 1.095862 1.095862 1.080913E-12 5.300427E-12
0.70 | 1.121126 | 1.121126 1.121126 1.382228E-12 7.093659E-12
0.75 | 1.150993 | 1.150993 1.150993 1.746159E-12 9.588108E-12
0.80 | 1.186095 | 1.186095 1.186095 2.182032E-12 1.414402E-11
0.85 | 1.227167 | 1.227167 1.227167 2.700507E-12 1.939360E-11
0.90 | 1.275069 | 1.275069 1.275069 3.312906E-12 2.664402E-11
0.95 | 1.330815 | 1.330815 1.330815 4.031664E-12 3.697487E-11
1.00 | 1.395612 | 1.395612 1.395612 4.870104E-12 5.145950E-11
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