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1. INTRODUCTION

Many life problems often result in differential equations 

when formulated mathematically, particularly problems 

that depend on time and rates. Some of these problems 

give rise to Partial Differential Equations (PDE) when 

using mathematical modeling techniques for describing 

phenomena in engineering, science, and the business 

world.  

Some known concepts such as Brownian motion, 

convection, diffusion, conduction, and dispersion are 

used to simulate applications in telecommunications, 

economics, biology, engineering, and social sciences. 

On transformation, using methods of lines, these PDEs 

are often transformed into systems of Ordinary 

Differential Equations (ODE) which established some 

common relationship between them such as change 

and rates. Some of these ODEs generated fall to the 

class of stiff problem with initial condition (I.C) whose 

results are very difficult to arrive at analytically, hence 

the need for robust numerical methods [1].  

Over the years many schemes have been developed to 

tackle this class of ODEs. Notable among them include 

Runge-Kutta (RK) methods, Linear Multistep Method, 

Collocation method, and Hybrid methods. 

The general class of the time-dependent PDE is of the 

form (1) of which the parabolic equation belongs to a 

special class, 
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Formulating pure PDE problems requires the 

combination of (1) for modeling some various concepts 

such as dispersion, convection, conduction in the 

simulation of application areas in: 

• collisions of data packets in a network

• solitons in optical fibres

• stock options

• transport in cellular tissues

• heat transfer

• pollution

• the behaviour of people in a crowd.

This paper discusses the solution of a special case of 

(1) known as parabolic PDEs which is of the form, 
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In time past, the Crank-Nicholson method has been the 

celebrated method for solving PDEs, because it 

transforms the PDEs into systems of linear equations 

which are solved by abundant existing linear solvers. In 

trying to improve the accuracy of the results produced 

by the former, several authors have generated 

numerical methods for the solution of PDEs by 

transforming the equations to systems of the first-order 

ODE using the method of lines, and Higher-Order 

methods are developed to solve the resulting ODEs 

[2,3]. Cash [4] derived two new finite difference 

schemes for parabolic equations. Shampine [3] 

developed ODE solvers using the method of lines; 

Diamantakis [5] developed a code called the NUMOL 

for time-dependent PDEs using Runge-Kutta schemes 

while Mazzia and Mazzia [6], solved PDEs with High-

order transverse schemes. Ramos and Vigo-Aguiar [6] 

developed a third-order backward differentiation 

formula with Chebyshev-Gauss-Lobatto quadratures, 

while Jator [8] developed some fifth-order backward 

differentiation formula with some other hybrid points. 

Ngawne and Jator [9], Akinnukawe et al; [10] developed 

some block methods for parabolic partial differential 

equations. In this paper, a block multistep method is 

derived via the multistep collocation technique [11, 12, 

13, 14, 15, 16]. This method shall be used to generate 

the numerical solution to some parabolic PDEs. 

This paper is structured as follows: The theoretical 

procedure is presented in section 2 which involves the 

framework for the transformation of the PDE to ODE 

using the methods of the line as discussed in Lambert 

[2] and Schiesser [17]. Section 3 discusses 

methodology by the derivation of the continuous 

Backward Differentiation Formula which forms the 

Block Multistep Method, some stability properties of the 

block multistep methods, the implementation strategy 

for the derived methods using Newton's method and we 

conclude this section by some experimental problems. 

Finally, we Finally, we give some concluding remarks in 

section 4. 

2. MATERIAL AND METHODS

2.1 Theoretical procedure 
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In this section, we present the transformation of a 

parabolic PDE to systems of ODE. The PDEs shall be 

discretized using the methods of lines into systems of 

ODEs and the newly derived methods shall be used to 

solve the PDE.  

Considering the parabolic PDE (2) given as, 
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The solution space involving a rectangular grid with 

sides parallel to the −x axes and −t axes, and with 

good spacing x and t , when 1=xm is considered. 

A mesh ratio 
2)( x
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The solution of (2) is approximated by the solution of 

the system of the first-order ODE of the form, 
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Since )()( 0

0 ttu =  and )()( 1 ttum = are known 

functions, therefore, (3) reduces to a system of ODE in 

the 1−M  unknowns, 

1,,2,1)( −= Mitui  which can be viewed as a 

tridiagonal matrix form, 
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Where
1

1

+
=

N
x . With the systems of equation (4), 

the eigenvalues of the matrix are 

2)(

)cos(22

x

xi
i
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
 ,  

Ni ,,2,,1 =

Which is in the range ( ))0,)1(4 2+− N . Hence for 

large N , the system of the first order (4) becomes very 

stiff.  

3. RESULTS AND DISCUSSION

3.1 Development of the new method. 

In this section, we present the development of a Block 

Backward Differentiation Formula derived from a 

continuous multistep scheme via the collocation 

technique. 

Consider an initial value problem of system of ODE, 

00 )(),,( yxyyxfy == (5) 

where f  satisfies the conditions of existence and 

uniqueness of the solution. Using the multistep 

collocation technique to derive the Block Backward 

Differentiation Formula in form of a block multistep 

matrix formula [18, 19, 20]. 
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 Tknnnn fffF ++++ = ,,, 211 1


For a fifth-order method, we set the basis function as, 
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The basis function (7) is interpolated at 

4,,0: == + jxx jn and collocated 

at 5: == + jxx jn . This leads to a system of 

equations in the matrix form, 
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Solving the equations and substituting the coefficients 

5,,2,1,0: =ja j  in (7), we obtain the continuous

multistep formula 
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Evaluating the continuous multistep formula (8) at 

5+= nxx  and )(xy  at  4321 ,,, ++++= nnnn xxxxx , we

obtain a block multistep formula in form of (6) with 

coefficients ija and ijb . 5,,1, =ji .
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which shall give the numerical solution to the PDE 

without predictors. 

3.2 Stability Properties of the Block Multistep 

Method 

Applying (6) with the coefficient matrix ,, BA and C  

to the test problem yy = , we obtain a characteristic 

equation whose maximum roots give the stability 

function given as 
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from the characteristics equation and stability function, 

we obtain a region of absolute stability 

( ) ( ) Sz − ,33.20, that shows some stiff

stability characteristics. 

Figure 1: RAS of the Block Multistep Method 
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Further investigation reveals the )(A stability 

properties with 
56.85= 0A and stable with 

.09.0=D We further investigate the desired property 

for highly stiff properties called the −L stability 

properties. We take the limit 

0)(lim =
−→

zR
z

 

This implies that the Block Multistep Method is almost 

−L stable or −0L stable, (for example, see [7,20,21]. 

These properties reveal that the numerical solutions 

tend to zero as quickly as possible for very fast 

decaying solutions. 

3.2 Implementation Strategy 

Since the Block Multistep Method is implicit in nature, 

Newton's iteration is used to obtain the numerical 

solution with the Block Multistep Method (6). The Block 

multistep method 
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using the Newton method, which when applied on (10), 

the numerical solution is obtained with the expression 
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3.3 Experimental Illustration 

In this section, we apply the Block Multistep Method on 

some parabolic Partial Differential Equations with our 

new code written in Maple. The errors obtained are 

generated by ),( jiij txuu − . We compare the 

numerical solutions obtained with the Crank-Nicholson 

(CN) method for solving PDE and some other methods 

in the literature. 

Problem 1 

We consider a simple test parabolic Partial Differential 

Equation solved in Cash [4] and Jator [8] for 

1= which can describe the heat flow on a rod with

the cool temperature at the edges given by, 
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Solving this problem with our Block Multistep Method, 

we present the numerical results at 1=t  for respective 

values for 1=  and 5  as presented in Table 1. 

Table 1: Numerical result for Prob. 1 at ,1=t 1.0== tx  

From Table 1, it is clear that the Block Backward 

Differentiation Formula (BBDF) yields a more accurate 

result than the result of the Crank-Nicholson 

computation and outperforms the results obtained by 

Cash [2] and Jator [7]. 

Problem 2 

We consider another parabolic differential equation of 

the form, 
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It is noted that when  increases the transformed 

equations become very stiff, which implies that only 

methods that are stable at infinity such as the Block 

Backward Differentiation Formula derived are capable 

of coping with such problems. Solving with the Block 

Backward Differentiation Formula (BBDF), we obtain 

the following results for 1=v  and 

,5,3,2,1= 10 respectively as presented in Table

2. 

Table 2: Numerical result for Problem 2 at 1=t

x t     CN BBDF 

0.1 0.1 1 1 51020.6 − 71010.1 −

0.1 0.1 2 1 51083.3 − 71070.2 −

0.1 0.1 3 1 31030.9 − 41030.1 −

0.1 0.1 5 1 11080.1 − 51077.5 −

0.1 0.1 10 1 11010.6 − 61051.5 −

Table 2 shows that this class of numerical methODS IS 

PROMISING FOR THE NUMERICAL SIMulation of 

mathematical models arising from physical problems 

  CN BBDF Cash [4] Jator [8] 

1 5100.3 − 81051.5 − 6105.4 − 61037.1 −

5 4100.2 − 111056.3 − 10100.2 − 81067.4 −
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that are IN THE FORM OF PARABOLIC PARTIAL 

DIFFERENTIAL EQUATIONS. 

4. CONCLUSION

A block backward differentiation formula has been 

derived via the multistep collocation technique. The 

stability analysis of this method reveals that the method 

is stable at infinity ( 0L -Stable) which makes the method 

capable of handling stiff equations. The Block Multistep 

Method is used to solve some parabolic PDEs via 

transformation to ODE by the method of lines without 

any predictor. Results obtained have shown that the 

method yield more accurate result than the Crank-

Nicholson method. 
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