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Abstract:

Introduction: One of the methods for investigating brain activity is
called functional magnetic resonance imaging (fMRI), and research
has shown that it has great potential for use in clinical applications.
However, some of the inconsistent findings reported by several
research place some limitations on fMRI. The absence of accepted
and standardized techniques for evaluating fMRI data is one of the
potential causes of the problem. To solve this issue, a standardized
parcellation model is desirable.

Aims: In this paper, we evaluated the performance of a novel
parcellation framework called the Node Vitality Model (NVM) for fMRI
image region of interest definition using the anatomical, functional,
and network features of the brain.

Materials and Methods: The model was evaluated using both real
data made up of 50 images of the human brain and simulated data
created using standard graph methods. Measures of segregation
using clustering, resilience using global efficiency, and integration
using assortativity were the metrics used to assess the vitality of the
brain nodes.

Results: According to the findings, assortativity varied between
0.0022 and 0.1394, clustering varied between 0.5267 and 0.9083,
and global efficiency varied between 0.5172 and 0.9167. Only 80 of
the 132 nodes taken into consideration in the majority rule's final
analysis were found to be significant, and this information was used
to construct a brain network. The resulting graph was then used to
re-parcellate the brain network using a reverse Engineering
approach.

Conclusion: This study showed that the node vitality model has
good promise for parcellating fMRI data considering anatomical,
functional and network features of the brain.
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1. INTRODUCTION

The investigation of functional connectivity and brain networks in the human brain using functional magnetic
resonance imaging (fMRI) has become crucial in neuroscience [1]. The method measures the temporal
correlation between several brain regions within a single person over time utilizing task-based time course
data acquired via a Blood Oxygenation Level Dependent contrast (BOLD) [2]. Connectivity associations
offer crucial diagnostic information for illnesses of the central nervous system. Because of its adaptability,
fMRI has been used extensively in neuroscience for studying schizophrenia [6, 7], bipolar disease [6, 8],
the link between connectivity and behavior [5, 4], and brain connectivity in different brain states [3, 4].

There have been a number of approaches proposed for processing fMRI data, including as the seed
methods [7], principal component analysis [8], independent component analysis [9], and clustering [10].
Although the outcomes of these methods have been encouraging, there is no universal agreement on the
best way for data analysis [11, 12]. The potential diagnostic or prognostic significance of fMRI data is
diminished by the lack of a standardized technique of processing, and it this has been suggested to be the
cause of conflicting results in its clinical uses [13]. In order to establish a framework for the application of
fMRI in the early and improved diagnosis of brain-related disorders, the development of a robust and
standardized mathematical model for data processing is necessary.

Many analyses of brain networks have used graph theory with great success [14]. This method models the
brain as a network or graph, G(N, M), with N "nodes" connected by M "edges". The graph's nodes often
represent various anatomical or functional parts of the brain, while the graph's edges show how these
regions interact with one another. This model makes it possible to analyze the topology and dynamics of
brain networks using a wide range of mathematical tools and theoretical ideas. [15-19]. A number of metrics
for assessing network features are provided by graph theory [20], such as small worldness [21], modularity
[22], global efficiency [23], clustering coefficient [18], and hierarchical structure [18]. These quantitative
network features have been shown to alter throughout normal development [24], aging [22, 25, 26], and a
number of neurological and neuropsychiatric illnesses, including Alzheimer's disease (AD) [27] and late-life
depression (LLD) [7, 28].

The individual voxels of the brain imaging dataset (voxel-based representation) or the mean values
calculated from a group of voxels can both be used to form the nodes of an fMRI brain graph (region-based
representation). The region based (ROI) technique sums voxel values over a range of voxels, resulting in
higher SNR, whereas analysis using the voxel based (VB) approach is undertaken on a single voxel basis,
resulting in low inherent Signal to Noise Ratio (SNR) [29, 30]. As a result, the mean values calculated from
a specific region of interest are frequently used to represent the nodes of an fMRI brain graph [31].

The proper designation of brain areas to represent the network nodes is one of the main methodological
issues of fMRI graph analysis [13, 32, 33]. The data-driven method, which is not dependent on past
knowledge, is an alternative to the model-based method, which is the universal method of defining regions
of interest [10, 13, 16, 18, 19, 22, 24, 27, 34-40]. When utilized to detect the fMRI experimental effect, it
has been shown that the model-based approach performs better than the data-driven technique [41].
Previous research has demonstrated that the network's organizational properties change depending on the
template selected [33, 42]. The Automated Anatomical Labeling (AAL) toolkit [44], the Freesurfer software
[45], and the Automatic Nonlinear Image Matching and Automatic Labeling algorithm (ANIMAL) atlas [43]
are the most often used templates. The fMRI brain data from each individual is divided into various areas
using these templates. Following that, network nodes and edges are formed using pairwise correlation and
regional means, respectively. Although this strategy has been quite effective, it has the following
drawbacks:

a. Given the lack of distinct macroscopic borders that can be utilized to distinguish between adjacent
regions, there is no reliable gold standard for ROI. As a result, the criteria are arbitrary and different
for each template. Even after data is translated into a standard space, there is still a significant
amount of diversity in terms of individual brain structure.
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b. The quantity of voxels within a region cannot be determined in a methodical manner. The current
range of this quantity, which affects network organizational factors, is between 10 and 1000 [10,
42].

c. Regions are frequently chosen to be as big as possible (to maximize SNR). Therefore, it is likely
that they incorporate signals from several functional sub-regions, which can make it more difficult
to understand the results or potentially cause partial volume inaccuracies 32].

2. MATERIAL AND METHODS

The interconnected issues in Section 1 are challenges for analyzing fMRI brain data, which adds to the
unreplicability of fMRI data analysis. This means that a model that can effectively divide fMRI brain data
into various standard regions must be developed.

Here, we offer a framework for an fMRI analysis model. It will be unnecessary to select a certain humber
of pixels for each zone because the model uses the anatomical, functional, and network aspects of the
brain to group only related pixels into a region.

2.1 Novel Vitality Model

The model was built on several network features, better measurements based on single attributes like the
Canonical correlation-based [38] measure, the Modularity [47] measure, and the Normalized Cut [46]
metric. The edges of the network will be based on the wavelet correlation coefficient, which has been shown
to perform better than Pearson correlation or other time-dependent correlation coefficients [34]. The
network nodes will be the mean values from each ROI.

The Node vitality measure algorithm is inspired by research that worked on modelling the impact of lesions
on the human brain [10]. The study used graph theory to simulate the presence of brain lesions in order to
measure network resilience.
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Figure 1: Node Vitality Algorithm

The Node Vitality Measure Algorithm (see Figure 2) applies the idea of quantifying the robustness of brain
networks to a node's significance within a network in this project. In essence, it involves taking a node (or
a set of nodes) out of a network and comparing how the network behaves (like connectedness) before and
after the node is gone. A node is significant if it engages in numerous node interactions, supports node
integration, and contributes significantly to the network's resistance to changes

Consequently, the loss of a key node will cause a substantial alteration in the network's characteristics. For
instance, removing a node from a network that connects a lot of other nodes will drastically diminish
connectivity. The node is not vital and shouldn't be in that region, so it is separated from that region if it is
removed with no discernible impact on the network attributes. In order to divide a specific anatomical region
into smaller ones, all nodes within that region will be removed.

2.2 Novel Removal Approach

Localized deletion or sequential single node deletion can both be used to remove nodes. Sequential single
node elimination involves removing each node one at a time until only one is left. Additionally, a group of
nodes are eliminated at a time in localized deletion. What determines which node (or set of nodes) to be
picked for removal, regardless of whether a sequential approach or localized technique is used, is a crucial
subject. There are two ways to achieve this; The first is targeted node selection, which involves choosing a
node for removal based on a metric, like the node's degree.
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Figure 2: Node Removal Approach

The four potential routes to which a node can be removed based on a certain sort of selection are
shown in Figure 2. These four possible channels are:
i.  Sequential node deletion using target node selection.
ii.  Sequential node deletion using boundary-based node selection.
iii.  Localized node deletion using target node selection.
iv.  Localized node deletion using boundary-based node selection.

2.3 Data
Two datasets were considered; namely simulated data and real data

2.3.1 Simulated Data

The simulated data, which served as the initial basis for assessing the performance of the suggested
algorithm, was produced arbitrarily in form of a graph with nodes resembling a typical brain graph. The
created simulated data had 746 edges and 71 nodes (see Figure 3).

Figure 3: Simulated Data (Subgraph)

2.3.2 Real Data

The real data utilized in the experiment was obtained from the 1000 Functional Connectomes Project, an
fMRI archive. An unrestricted public release of more than 1200 functional MRI (fMRI) datasets that were
separately obtained at 33 sites is known as the "1000 Functional Connectomes" Project. Every dataset was
freely available to the public [50]. The dataset contains information about each participant's age, sex, and
imaging center, but the participants' identities are kept secret.
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The dataset under consideration comes from a New York contribution (NYU CSC) to the 1000 Functional
Connectomes Project, and it consists of T1 Weighted (Figure 4) and resting state fMRI (Figure 5) scans of
50 subjects (35 men and 15 women) aged 20 to 50 (20-50).

Figure 4: Five Structural brain image (T1
Weighted) from the real data

Figure 5: A subject’s functional brain

Image from the real data

2.4 Experiment

The developed model was tested on the two datasets.

Table 1.  Physical, chemical and biological properties of experimental soil (0-20 cm)

S/N Regions of Interests Node No of
Label edges
1. atlas.Cereb8 r (Cerebelum 8 Right) N1 1
2. atlas.FO | (Frontal Operculum Cortex Left) N2 1
3. atlas.Cereb10 | (Cerebelum 10 Left) N3 1
4, atlas.Cereb9 | (Cerebelum 9 Left) N4 2
5. atlas.Cereb10 r (Cerebelum 10 Right) N5 2
6. atlas.Hippocampus | N6 2
7. atlas.Ver3 (Vermis 3) N7 3
8. atlas.Caudate r N8 4
9. atlas.Cereb7 | (Cerebelum 7b Left) N9 5
10.  atlas.Ver9 (Vermis 9) N10 5
11.  atlas.Cereb3 r (Cerebelum 3 Right) N11 5
12.  atlas.aTFusC I (Temporal Fusiform Cortex, anterior division Left) N12 5
13.  atlas.Verl0 (Vermis 10) N13 6
14.  atlas.Ver8 (Vermis 8) N14 6
15.  atlas.aTFusC r (Temporal Fusiform Cortex, anterior division Right) N15 6
16.  atlas.Cereb8 I (Cerebelum 8 Left) N16 7
17.  atlas.pPaHC I (Parahippocampal Gyrus, posterior division Left) N17 7
18.  atlas.SCC I (Supracalcarine Cortex Left) N18 8
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19.
20.
21.
22.
23.
24.
25.
26.
217.
28.
29.
30.
3L
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42,
43.
44,
45.
46.
47,
48.
49.
50.
51
52.
53.
54.
55.
56.
57.
58.
59.
60.

atlas.Pallidum |

atlas.Caudate |

atlas.PP | (Planum Polare Left)

atlas.Cereb3 | (Cerebelum 3 Left)

atlas.Hippocampus r

atlas.al TG | (Inferior Temporal Gyrus, anterior division Left)
atlas.Cereb7 r (Cerebelum 7b Right)

atlas.pITG r (Inferior Temporal Gyrus, posterior division Right)
atlas.aPaHC | (Parahippocampal Gyrus, anterior division Left)
atlas.iLOC r (Lateral Occipital Cortex, inferior division Right)
atlas.toMTG r (Middle Temporal Gyrus, temporooccipital part Right)
atlas.Brain-Stem

atlas.Accumbens r

atlas.tol TG | (Inferior Temporal Gyrus, temporooccipital part Left)
atlas.pPaHC r (Parahippocampal Gyrus, posterior division Right)
atlas.Pallidum r

atlas.Cereb9 r (Cerebelum 9 Right)

atlas.ICC I (Intracalcarine Cortex Left)

atlas.Accumbens |

atlas.tol TG r (Inferior Temporal Gyrus, temporooccipital part Right)
atlas.sLOC I (Lateral Occipital Cortex, superior division Left)
atlas.Cereb2 r (Cerebelum Crus2 Right)

atlas.Putamen r

atlas.Putamen |

atlas.Cereb45 r (Cerebelum 4 5 Right)

atlas.aMTG r (Middle Temporal Gyrus, anterior division Right)
atlas.pSTG | (Superior Temporal Gyrus, posterior division Left)
atlas.SPL | (Superior Parietal Lobule Left)

atlas.Cuneal | (Cuneal Cortex Left)

atlas.pITG | (Inferior Temporal Gyrus, posterior division Left)
atlas.PaCiG | (Paracingulate Gyrus Left)

atlas.FO r (Frontal Operculum Cortex Right)

atlas.IFG oper | (Inferior Frontal Gyrus, pars opercularis Left)
atlas.SPL r (Superior Parietal Lobule Right)

atlas.IFG tri | (Inferior Frontal Gyrus, pars triangularis Left)
atlas.aPaHC r (Parahippocampal Gyrus, anterior division Right)
atlas.OP | (Occipital Pole Left)

atlas.Amygdala r

atlas.SCC r (Supracalcarine Cortex Right)

atlas.sLOC r (Lateral Occipital Cortex, superior division Right)
atlas.aSTG r (Superior Temporal Gyrus, anterior division Right)
atlas.iLOC | (Lateral Occipital Cortex, inferior division Left)

N19
N20
N21
N22
N23
N24
N25
N26
N27
N28
N29
N30
N31
N32
N33
N34
N35
N36
N37
N38
N39
N40
N41
N42
N43
N44
N45
N46
N47
N48
N49
N50
N51
N52
N53
N54
N55
N56
N57
N58
N59
N60
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61.  atlas.SMA r (Juxtapositional Lobule Cortex -formerly Supplementary Motor N61 19
Cortex- Right)

62.  atlas.OFusG | (Occipital Fusiform Gyrus Left) N62 19
63.  atlas.aSMG | (Supramarginal Gyrus, anterior division Left) N63 19
64.  atlas.OFusG r (Occipital Fusiform Gyrus Right) N64 20
65.  atlas.HG | (Heschl's Gyrus Left) N65 20
66.  atlas.pSTG r (Superior Temporal Gyrus, posterior division Right) N66 20
67.  atlas.Ver6 (Vermis 6) N67 20
68.  atlas.FP | (Frontal Pole Left) N68 20
69. atlas.MedFC (Frontal Medial Cortex) N71 20
70.  atlas.pTFusC I (Temporal Fusiform Cortex, posterior division Left) N72 21
71.  atlas.Thalamus r N73 21
72.  atlas.Cuneal r (Cuneal Cortex Right) N74 21
73.  atlas.PO r (Parietal Operculum Cortex Right) N75 21
74.  atlas.toMTG | (Middle Temporal Gyrus, temporooccipital part Left) N76 21
75.  atlas.SubCalC (Subcallosal Cortex) N78 21
76.  atlas.PP r (Planum Polare Right) N79 21
77.  atlas.pTFusC r (Temporal Fusiform Cortex, posterior division Right) N80 22
78.  atlas.ICC r (Intracalcarine Cortex Right) N82 22
79.  atlas.LG r (Lingual Gyrus Right) N83 22
80.  atlas.TOFusC r (Temporal Occipital Fusiform Cortex Right) N84 22
81.  atlas.HG r (Heschl's Gyrus Right) N85 22
82.  atlas.alTG r (Inferior Temporal Gyrus, anterior division Right) N86 23
83.  atlas.Ver7 (Vermis 7) N87 23
84.  atlas.OP r (Occipital Pole Right) N88 23
85.  atlas.aSTG | (Superior Temporal Gyrus, anterior division Left) N89 24
86.  atlas.MidFG r (Middle Frontal Gyrus Right) N90 25
87.  atlas.AG | (Angular Gyrus Left) N9l 25
88.  atlas.FOrb I (Frontal Orbital Cortex Left) N92 25
89. atlas.AG r (Angular Gyrus Right) N93 25
90. atlas.PC (Cingulate Gyrus, posterior division) N94 26
91.  atlas.Ver45 (Vermis 4 5) N95 26
92.  atlas.aSMG r (Supramarginal Gyrus, anterior division Right) N96 26
93.  atlas.AC (Cingulate Gyrus, anterior division) N97 26
94.  atlas.FOrb r (Frontal Orbital Cortex Right) N98 26
95. atlas.LG I (Lingual Gyrus Left) N99 26
96.  atlas.pSMG I (Supramarginal Gyrus, posterior division Left) N100 27
97.  atlas.SMA L(Juxtapositional Lobule Cortex -formerly Supplementary Motor N101 27
Cortex- Left)
98. atlas.pMTG | (Middle Temporal Gyrus, posterior division Left) N102 28
99.  atlas.PaCiG r (Paracingulate Gyrus Right) N103 28
100. atlas.pSMG r (Supramarginal Gyrus, posterior division Right) N104 29
101. atlas.TOFusC I (Temporal Occipital Fusiform Cortex Left) N105 29
102. atlas.CO r (Central Opercular Cortex Right) N106 30
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103. atlas.Cereb6 | (Cerebelum 6 Left) N107 30

104. atlas.PostCG | (Postcentral Gyrus Left) N108 30
105. atlas.aMTG I (Middle Temporal Gyrus, anterior division Left) N109 30
106. atlas.IFG tri r (Inferior Frontal Gyrus, pars triangularis Right) N110 30
107. atlas.SFG r (Superior Frontal Gyrus Right) N111 30
108. atlas.PO I (Parietal Operculum Cortex Left) N112 30
109. atlas.SFG I (Superior Frontal Gyrus Left) N113 31
110. atlas.MidFG | (Middle Frontal Gyrus Left) N114 31
111. atlas.TP r (Temporal Pole Right) N115 32
112. atlas.IFG oper r (Inferior Frontal Gyrus, pars opercularis Right) N116 33
113. atlas.CO I (Central Opercular Cortex Left) N117 33
114. atlas.Thalamus | N118 33
115. atlas.PT I (Planum Temporale Left) N119 34
116. atlas.Precuneous (Precuneous Cortex) N120 34
117. atlas.Cereb2 | (Cerebelum Crus2 Left) N121 34
118. atlas.PreCG r (Precentral Gyrus Right) N122 35
119. atlas.FP r (Frontal Pole Right) N123 35
120. atlas.PreCG I (Precentral Gyrus Left) N124 35
121. atlas.pMTG r (Middle Temporal Gyrus, posterior division Right) N125 37
122. atlas.TP | (Temporal Pole Left) N126 38
123. atlas.PostCG r (Postcentral Gyrus Right) N127 38
124. atlas.PT r (Planum Temporale Right) N128 38
125. atlas.IC | (Insular Cortex Left) N129 39
126. atlas.Cerebl I (Cerebelum Crusl Left) N130 39
127. atlas.Cereb6 r (Cerebelum 6 Right) N131 39
128. atlas.Cereb45 | (Cerebelum 4 5 Left) N132 46

2.4.1 Node Significance indicator

The selected metrics were used to generate a node significant indicator that specifies the significant of a
node by considering and comparing the changing in the values of the metric before and after a node is
removed from the subgraph R. A decrease in the value of each metric whenever a node is removed
indicates significance and an increase in the value indicates insignificance. The results of the three metrics
combined to form a logical decision table that indicates the significance of a node (see Table Error! No text
of specified style in document..1)

Table Error! No text of specified style in document..1 Node Significance Indicator
S/IN Assortativity Clustering Global Efficiency Node
Significance

1. Increase Increase Increase Insignificant
2. Increase Increase Decrease Insignificant
3. Increase Decrease Increase Insignificant
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4, Decrease
5. Increase

6. Decrease
7. Decrease
8. Decrease

2.4.2 Voting Rule

Increase

Decrease

Increase

Decrease

Decrease

Increase

Decrease

Decrease

Increase

Decrease

Insignificant
Significant
Significant
Significant

Significant

In order to reconstruct a new brain model from the node significance recordings across multiple subjects’
brain, a classification strategy is required to determine which nodes will be retained and we nodes are to
be merged. Owing to this, a majority voting rule will be employed. In majority rule each individual classifier
represents one score that is either as a whole assigned to one class label or divided into several labels.

The label, which receives more than half of the total scores, is taken as the final result [55-56].

The majority voting rule has been proved to be effective in different cases of fusing and labelling brain

segmentations [57-59]

3. RESULTS AND DISCUSSION
3.1 Results

The evaluation of the Node Vitality Model (NVM) was conducted using both simulated and real fMRI
datasets to assess its efficacy in brain network parcellation. The results were analyzed based on three key

network metrics: segregation, integration, and resilience.

3.1.1 Measure of Segregation
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Figure 6: Line Graph showing changes in the clustering metric triggered by node removal

The clustering coefficient was used to evaluate the segregation properties of the brain network. As shown
in Figure 6, the clustering values for different nodes were assessed before and after their removal. The red
boundary line represents the initial clustering coefficient before node removal. Any node removal that
resulted in a decrease in clustering value below this boundary was considered significant. The results
revealed that several nodes exhibited substantial reductions in clustering coefficient, indicating their strong
contribution to network segregation.

3.1.2 Measure of Integration

Global efficiency
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Figure 7: Line Graph showing changes in the global efficiency metric triggered by node
removal

Global efficiency was employed to measure the level of integration within the brain network. Figure 7
illustrates the variations in global efficiency values triggered by the removal of individual nodes. Similar to
the clustering analysis, the red line serves as the reference point for the pre-removal efficiency. Nodes
whose removal led to a significant drop in global efficiency were deemed critical for network integration.
The findings demonstrated that the NVM successfully identified key nodes that enhance the
interconnectedness of brain regions, thereby reinforcing network integration.
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3.1.3 Measure of Resilience

Assortativity
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Figure 8: Line Graph showing changes in the assortatvity metric triggered by node
removal

Resilience was evaluated using the assortativity metric, which reflects the tendency of nodes to connect
with similar nodes. Figure 8 presents the changes in assortativity values following node removal. The results
show that certain nodes played a crucial role in maintaining the network’s resilience, as their removal
caused a noticeable decrease in assortativity. Nodes whose removal had minimal impact on assortativity
were classified as less significant and were candidates for merging

3.2 Discussion
Here, the implications of putting this research's technique into practice are explored. Accordingly, the
implications and reasons of the experiment's findings are stressed.

3.2.1 Implication of results

The graph metrics were obtained after each node was successively eliminated to ascertain its significance.
According to the findings, assortativity varied between 0.0022 and 0.1394, clustering varied between 0.5267
and 0.9083, and overall effectiveness varied between 0.5172 and 0.9167.

The node that has the status "Merge" is combined with its neighbours' nodes that have the most edges and
similar brain functions. The regions that resulted from the merging sequence are displayed.

3.2.2 Strenghts and Weaknesses

The fact that 52 nodes were combined and 80 nodes were kept does not affect the integrity of the brain
network because it is merely a reassignment of regions to be included in other nearby regions that share a
high level of connection. Therefore, having fewer nodes means that there is a dramatic increase in
connection between brain regions and a consequent reduction in the segregation between previously
distant regions.

The node vitality algorithm-generated brain graph was compared to the prior network metrics of the brain
graph that were collected using an atlas. Our finding (see Table 2) demonstrates that after the non-
significant nodes were merged with the retained nodes, the network metric with regards to resilience,
segregation, and integration has a noticeable improvement across most of the subjects. Due to its higher
level of integrated sections, the newly developed brain network becomes more sensitive to changes, which
will better tracking of both minor and significant flaws in the brain regions.

Table 2. Network Performance of parcellation result
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S/N Subjects Assortativity Clustering Global Efficiency
Merge Effect Merge Effect Merge Effect
Before | After Before | After Before | After

1. Subject 1 0.311502 0.344501  0.483007 0.5311 0.51492 0.52135
2. Subject 2 0.30615 0.329682  0.476801 0.47891 0.50345 0.56712
3. Subject 3 0.314424 0.401048 0.46205 0.516771  0.544947  0.567226
4. Subject 4 0.374363 0.459906  0.514738  0.585986  0.563227  0.587811
5. Subject 5 0.312828 0.368161  0.514486  0.568022 0.56724 0.603792
6. Subject 6 0.363692 0.454385  0.478571  0.544347 0.506079  0.545726
7. Subject 7 0.386139 0.457272  0.482184  0.533078 0.589733  0.619357
8. Subject 8 0.382528 0.436118  0.486087  0.542555 0.53586 0.574051
9. Subject 9 0.366856 0.425141 0.46445 0.514577  0.574879  0.622306
10. Subject 10 0.336813 0.402709  0.460017  0.548403  0.599942  0.634521
11. Subject 11 0.378585 0.465928  0.487119  0.552857  0.530345 0.57993
12. Subject 12 0.311474 0.379887  0.508827  0.591999  0.520402  0.545346
13. Subject 13 0.341475 0.414638 0.471115 0.569332 0.548645  0.572307
14. Subject 14 0.3715 0.42218 0.497902 0.57909 0.542894 0.5682
15. Subject 15 0.300356 0.397988  0.462269  0.557268  0.578539  0.620174
16. Subject 16 0.355757 0.450832  0.516455  0.568045 0.547032  0.596431
17. Subject 17 0.342448 0.417125  0.467121  0.525014 0.55526 0.600021
18. Subject 18 0.377373 0.442056  0.469771  0.536946  0.567461  0.589868
19. Subject 19 0.309714 0.387828  0.453291  0.548148 0.575991  0.613694
20. Subject 20 0.389186 0.461966 0.51899 0.579311  0.572925  0.615253
21. Subject 21 0.319067 0.380249  0.489227 0.55598 0.589379  0.615561
22. Subject 22 0.319178 0.402468  0.464107 0.53309 0.505097  0.530379
23. Subject 23 0.34952 0.409292  0.505155  0.597183  0.567463  0.615543
24, Subject 24 0.372455 0.45536 0.478102  0.541073  0.529317  0.575966
25. Subject 25 0.379312 0.451597  0.491345 0.568557  0.586559  0.630959
26. Subject 26 0.365657 0.437346  0.468464  0.531036  0.572679  0.594004
217. Subject 27 0.308794 0.369813  0.460701 0.5183 0.544478  0.582385
28. Subject 28 0.319697 0.386209  0.499777  0.587269  0.574629  0.602452
29. Subject 29 0.363848 0.452903  0.481362  0.564529  0.525918  0.557531
30. Subject 30 0.334927 0.407509  0.519797  0.591387 0.528466  0.557867
31. Subject 31 0.338934 0.413455  0.492443  0.592282  0.593663 0.62129
32. Subject 32 0.367519 0.440204  0.466628  0.556553  0.591895  0.615589
33. Subject 33 0.338245 0.437154  0.494443  0.570132 0.519904  0.546347
34. Subject 34 0.339843 0.396897  0.495276  0.566966  0.510407  0.547113
35. Subject 35 0.355617 0.421004  0.511199  0.584211  0.558165 0.60102
36. Subject 36 0.348353 0.438851 0.487638 0.577082 0.506489  0.531036
37. Subject 37 0.368786 0.454781  0.511031 0.58767 0.585106 0.61071
38. Subject 38 0.370918 0.446465  0.500297  0.564478  0.522424 0.56667
39. Subject 39 0.387806 0.451837  0.512203 0.574348 0.581004  0.606272
40. Subject 40 0.347294 0.411239  0.519597 0.616677  0.548052  0.585269
41. Subject 41 0.308587 0.387092  0.453271  0.546047  0.514482  0.549332
42. Subject 42 0.367974 0.452045  0.512289  0.592553  0.553398  0.601827
43. Subject 43 0.340317 0.420682  0.486577  0.578909  0.555038  0.593346
44, Subject 44 0.37176 0.452541  0.451431 0.50372 0.58775 0.614837
45, Subject 45 0.334454 0.390929  0.457525  0.543783 0.570763  0.598752
46. Subject 46 0.397102 0.46641 0.498342  0.597374  0.598915 0.622774
47. Subject 47 0.334006 0.408818 0.46813 0.548527  0.583736  0.615149
48. Subject 48 0.317961 0.384088  0.461453  0.560052  0.597486  0.638197
49, Subject 49 0.312614 0.401225  0.461431 0.47372 0.533869  0.567436
50. Subject 50 0.3151 0.30978 0.45680 0.4722 0.5287 0.5455
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The findings from the three metrics collectively guided the classification of significant and insignificant
nodes. The majority voting rule was applied to determine the final parcellation, leading to the retention of
80 significant nodes and the merging of 52 nodes. Table 2 presents the network performance metrics before
and after the application of the NVM across multiple subjects.

The results indicate that the parcellation achieved through the NVM led to an overall improvement in
network connectivity. The refined brain network exhibited enhanced integration and resilience, suggesting
that the NVM provides a more consistent and biologically meaningful framework for brain parcellation
compared to traditional atlas-based approaches.

4. CONCLUSION

This study has revealed that the node vitality measure algorithm is an effective tool for dividing parcellating
the brain more uniformly compared to existing arbitrary approaches, due to its consistency of node
classification across different subjects. The node vitality measure program can be utilized remotely by any
research lead using Google Colab's free source program. The resulting significance of ROls across multiple
subjects can be utilized to evenly partition the brain into relevant regions of interest. To bolster and improve
its efficacy, the node vitality model could be expanded to include more than three graph metrics. The
addition of additional measures will guarantee a more comprehensive assessment of node significance and
classification. Because some research implies that using numerous atlases instead of a single atlas result
in more reliable findings, the usage of multiple atlases for the initial parcellation operation can be further
investigated. To find the optimal clinical use of the node vitality parcellation model, the medical ramifications
of node categorization might be investigated.
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