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Abstract: 
Introduction: One of the methods for investigating brain activity is 
called functional magnetic resonance imaging (fMRI), and research 
has shown that it has great potential for use in clinical applications. 
However, some of the inconsistent findings reported by several 
research place some limitations on fMRI. The absence of accepted 
and standardized techniques for evaluating fMRI data is one of the 
potential causes of the problem. To solve this issue, a standardized 
parcellation model is desirable.   
Aims: In this paper, we evaluated the performance of a novel 
parcellation framework called the Node Vitality Model (NVM) for fMRI 
image region of interest definition using the anatomical, functional, 
and network features of the brain. 
Materials and Methods: The model was evaluated using both real 
data made up of 50 images of the human brain and simulated data 
created using standard graph methods. Measures of segregation 
using clustering, resilience using global efficiency, and integration 
using assortativity were the metrics used to assess the vitality of the 
brain nodes. 
Results: According to the findings, assortativity varied between 
0.0022 and 0.1394, clustering varied between 0.5267 and 0.9083, 
and global efficiency varied between 0.5172 and 0.9167. Only 80 of 
the 132 nodes taken into consideration in the majority rule's final 
analysis were found to be significant, and this information was used 
to construct a brain network. The resulting graph was then used to 
re-parcellate the brain network using a reverse Engineering 
approach. 
Conclusion: This study showed that the node vitality model has 
good promise for parcellating fMRI data considering anatomical, 
functional and network features of the brain. 
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1. INTRODUCTION   
 
The investigation of functional connectivity and brain networks in the human brain using functional magnetic 
resonance imaging (fMRI) has become crucial in neuroscience [1]. The method measures the temporal 
correlation between several brain regions within a single person over time utilizing task-based time course 
data acquired via a Blood Oxygenation Level Dependent contrast (BOLD) [2]. Connectivity associations 
offer crucial diagnostic information for illnesses of the central nervous system. Because of its adaptability, 
fMRI has been used extensively in neuroscience for studying schizophrenia [6, 7], bipolar disease [6, 8], 
the link between connectivity and behavior [5, 4], and brain connectivity in different brain states [3, 4]. 
 
There have been a number of approaches proposed for processing fMRI data, including as the seed 
methods [7], principal component analysis [8], independent component analysis [9], and clustering [10]. 
Although the outcomes of these methods have been encouraging, there is no universal agreement on the 
best way for data analysis [11, 12]. The potential diagnostic or prognostic significance of fMRI data is 
diminished by the lack of a standardized technique of processing, and it this has been suggested to be the 
cause of conflicting results in its clinical uses [13]. In order to establish a framework for the application of 
fMRI in the early and improved diagnosis of brain-related disorders, the development of a robust and 
standardized mathematical model for data processing is necessary. 
 
Many analyses of brain networks have used graph theory with great success [14]. This method models the 
brain as a network or graph, G(N, M), with N "nodes" connected by M "edges". The graph's nodes often 
represent various anatomical or functional parts of the brain, while the graph's edges show how these 
regions interact with one another. This model makes it possible to analyze the topology and dynamics of 
brain networks using a wide range of mathematical tools and theoretical ideas. [15-19]. A number of metrics 
for assessing network features are provided by graph theory [20], such as small worldness [21], modularity 
[22], global efficiency [23], clustering coefficient [18], and hierarchical structure [18]. These quantitative 
network features have been shown to alter throughout normal development [24], aging [22, 25, 26], and a 
number of neurological and neuropsychiatric illnesses, including Alzheimer's disease (AD) [27] and late-life 
depression (LLD) [7, 28]. 
 
The individual voxels of the brain imaging dataset (voxel-based representation) or the mean values 
calculated from a group of voxels can both be used to form the nodes of an fMRI brain graph (region-based 
representation). The region based (ROI) technique sums voxel values over a range of voxels, resulting in 
higher SNR, whereas analysis using the voxel based (VB) approach is undertaken on a single voxel basis, 
resulting in low inherent Signal to Noise Ratio (SNR) [29, 30]. As a result, the mean values calculated from 
a specific region of interest are frequently used to represent the nodes of an fMRI brain graph [31]. 
 
The proper designation of brain areas to represent the network nodes is one of the main methodological 
issues of fMRI graph analysis [13, 32, 33]. The data-driven method, which is not dependent on past 
knowledge, is an alternative to the model-based method, which is the universal method of defining regions 
of interest [10, 13, 16, 18, 19, 22, 24, 27, 34-40]. When utilized to detect the fMRI experimental effect, it 
has been shown that the model-based approach performs better than the data-driven technique [41]. 
Previous research has demonstrated that the network's organizational properties change depending on the 
template selected [33, 42]. The Automated Anatomical Labeling (AAL) toolkit [44], the Freesurfer software 
[45], and the Automatic Nonlinear Image Matching and Automatic Labeling algorithm (ANIMAL) atlas [43] 
are the most often used templates. The fMRI brain data from each individual is divided into various areas 
using these templates. Following that, network nodes and edges are formed using pairwise correlation and 
regional means, respectively. Although this strategy has been quite effective, it has the following 
drawbacks: 

a. Given the lack of distinct macroscopic borders that can be utilized to distinguish between adjacent 
regions, there is no reliable gold standard for ROI. As a result, the criteria are arbitrary and different 
for each template. Even after data is translated into a standard space, there is still a significant 
amount of diversity in terms of individual brain structure.  
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b. The quantity of voxels within a region cannot be determined in a methodical manner. The current 
range of this quantity, which affects network organizational factors, is between 10 and 1000 [10, 
42].  

c. Regions are frequently chosen to be as big as possible (to maximize SNR). Therefore, it is likely 
that they incorporate signals from several functional sub-regions, which can make it more difficult 
to understand the results or potentially cause partial volume inaccuracies 32]. 

 
 
 

2. MATERIAL AND METHODS  
 
The interconnected issues in Section 1 are challenges for analyzing fMRI brain data, which adds to the 
unreplicability of fMRI data analysis. This means that a model that can effectively divide fMRI brain data 
into various standard regions must be developed.  
 
Here, we offer a framework for an fMRI analysis model. It will be unnecessary to select a certain number 
of pixels for each zone because the model uses the anatomical, functional, and network aspects of the 
brain to group only related pixels into a region.  
 

2.1 Novel Vitality Model   
The model was built on several network features, better measurements based on single attributes like the 
Canonical correlation-based [38] measure, the Modularity [47] measure, and the Normalized Cut [46] 
metric. The edges of the network will be based on the wavelet correlation coefficient, which has been shown 
to perform better than Pearson correlation or other time-dependent correlation coefficients [34]. The 
network nodes will be the mean values from each ROI. 
The Node vitality measure algorithm is inspired by research that worked on modelling the impact of lesions 
on the human brain [10]. The study used graph theory to simulate the presence of brain lesions in order to 
measure network resilience. 
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Figure 1: Node Vitality Algorithm 

 
The Node Vitality Measure Algorithm (see Figure 2) applies the idea of quantifying the robustness of brain 
networks to a node's significance within a network in this project. In essence, it involves taking a node (or 
a set of nodes) out of a network and comparing how the network behaves (like connectedness) before and 
after the node is gone. A node is significant if it engages in numerous node interactions, supports node 
integration, and contributes significantly to the network's resistance to changes 
 
Consequently, the loss of a key node will cause a substantial alteration in the network's characteristics. For 
instance, removing a node from a network that connects a lot of other nodes will drastically diminish 
connectivity. The node is not vital and shouldn't be in that region, so it is separated from that region if it is 
removed with no discernible impact on the network attributes. In order to divide a specific anatomical region 
into smaller ones, all nodes within that region will be removed. 
 
 

2.2 Novel Removal Approach 
Localized deletion or sequential single node deletion can both be used to remove nodes. Sequential single 
node elimination involves removing each node one at a time until only one is left. Additionally, a group of 
nodes are eliminated at a time in localized deletion. What determines which node (or set of nodes) to be 
picked for removal, regardless of whether a sequential approach or localized technique is used, is a crucial 
subject. There are two ways to achieve this; The first is targeted node selection, which involves choosing a 
node for removal based on a metric, like the node's degree. 
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Figure 2: Node Removal Approach 

The four potential routes to which a node can be removed based on a certain sort of selection are 

shown in Figure 2. These four possible channels are: 

i. Sequential node deletion using target node selection. 

ii. Sequential node deletion using boundary-based node selection. 

iii. Localized node deletion using target node selection. 

iv. Localized node deletion using boundary-based node selection. 

 
 

2.3 Data   
Two datasets were considered; namely simulated data and real data  
 

2.3.1 Simulated Data   
The simulated data, which served as the initial basis for assessing the performance of the suggested 
algorithm, was produced arbitrarily in form of a graph with nodes resembling a typical brain graph. The 
created simulated data had 746 edges and 71 nodes (see Figure 3). 

 

Figure 3: Simulated Data (Subgraph) 

 

2.3.2 Real Data   
The real data utilized in the experiment was obtained from the 1000 Functional Connectomes Project, an 
fMRI archive. An unrestricted public release of more than 1200 functional MRI (fMRI) datasets that were 
separately obtained at 33 sites is known as the "1000 Functional Connectomes" Project. Every dataset was 
freely available to the public [50]. The dataset contains information about each participant's age, sex, and 
imaging center, but the participants' identities are kept secret. 
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The dataset under consideration comes from a New York contribution (NYU CSC) to the 1000 Functional 
Connectomes Project, and it consists of T1 Weighted (Figure 4) and resting state fMRI (Figure 5) scans of 
50 subjects (35 men and 15 women) aged 20 to 50 (20-50).  
 

 
Figure 4:  Five Structural brain image (T1 

Weighted) from the real data 

 
 

 
Figure 5: A subject’s functional brain 

Image from the real data 

 

 

2.4 Experiment 
   
The developed model was tested on the two datasets.  
 
Table 1. Physical, chemical and biological properties of experimental soil (0-20 cm) 

S/N  Regions of Interests Node 

Label 

No of 

edges 

1.  atlas.Cereb8 r (Cerebelum 8 Right) N1 1 

2.  atlas.FO l (Frontal Operculum Cortex Left) N2 1 

3.  atlas.Cereb10 l (Cerebelum 10 Left) N3 1 

4.  atlas.Cereb9 l (Cerebelum 9 Left) N4  2 

5.  atlas.Cereb10 r (Cerebelum 10 Right) N5 2 

6.  atlas.Hippocampus l N6 2 

7.  atlas.Ver3 (Vermis 3) N7 3 

8.  atlas.Caudate r N8 4 

9.  atlas.Cereb7 l (Cerebelum 7b Left) N9 5 

10.  atlas.Ver9 (Vermis 9) N10 5 

11.  atlas.Cereb3 r (Cerebelum 3 Right) N11 5 

12.  atlas.aTFusC l (Temporal Fusiform Cortex, anterior division Left) N12 5 

13.  atlas.Ver10 (Vermis 10) N13 6 

14.  atlas.Ver8 (Vermis 8) N14 6 

15.  atlas.aTFusC r (Temporal Fusiform Cortex, anterior division Right) N15 6 

16.  atlas.Cereb8 l (Cerebelum 8 Left) N16 7 

17.  atlas.pPaHC l (Parahippocampal Gyrus, posterior division Left) N17 7 

18.  atlas.SCC l (Supracalcarine Cortex Left) N18 8 
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19.  atlas.Pallidum l N19 9 

20.  atlas.Caudate l N20 9 

21.  atlas.PP l (Planum Polare Left) N21 9 

22.  atlas.Cereb3 l (Cerebelum 3 Left) N22 9 

23.  atlas.Hippocampus r N23 10 

24.  atlas.aITG l (Inferior Temporal Gyrus, anterior division Left) N24 10 

25.  atlas.Cereb7 r (Cerebelum 7b Right) N25 10 

26.  atlas.pITG r (Inferior Temporal Gyrus, posterior division Right) N26 11 

27.  atlas.aPaHC l (Parahippocampal Gyrus, anterior division Left) N27 11 

28.  atlas.iLOC r (Lateral Occipital Cortex, inferior division Right) N28 11 

29.  atlas.toMTG r (Middle Temporal Gyrus, temporooccipital part Right) N29 11 

30.  atlas.Brain-Stem N30 11 

31.  atlas.Accumbens r N31 12 

32.  atlas.toITG l (Inferior Temporal Gyrus, temporooccipital part Left) N32 12 

33.  atlas.pPaHC r (Parahippocampal Gyrus, posterior division Right) N33 13 

34.  atlas.Pallidum r N34 13 

35.  atlas.Cereb9 r (Cerebelum 9 Right) N35 13 

36.  atlas.ICC l (Intracalcarine Cortex Left) N36 13 

37.  atlas.Accumbens l N37 13 

38.  atlas.toITG r (Inferior Temporal Gyrus, temporooccipital part Right) N38 14 

39.  atlas.sLOC l (Lateral Occipital Cortex, superior division Left) N39 14 

40.  atlas.Cereb2 r (Cerebelum Crus2 Right) N40 14 

41.  atlas.Putamen r N41 15 

42.  atlas.Putamen l N42 15 

43.  atlas.Cereb45 r (Cerebelum 4 5 Right) N43 16 

44.  atlas.aMTG r (Middle Temporal Gyrus, anterior division Right) N44 16 

45.  atlas.pSTG l (Superior Temporal Gyrus, posterior division Left) N45 16 

46.  atlas.SPL l (Superior Parietal Lobule Left) N46 16 

47.  atlas.Cuneal l (Cuneal Cortex Left) N47 17 

48.  atlas.pITG l (Inferior Temporal Gyrus, posterior division Left) N48 17 

49.  atlas.PaCiG l (Paracingulate Gyrus Left) N49 17 

50.  atlas.FO r (Frontal Operculum Cortex Right) N50 17 

51.  atlas.IFG oper l (Inferior Frontal Gyrus, pars opercularis Left) N51 17 

52.  atlas.SPL r (Superior Parietal Lobule Right) N52 18 

53.  atlas.IFG tri l (Inferior Frontal Gyrus, pars triangularis Left) N53 18 

54.  atlas.aPaHC r (Parahippocampal Gyrus, anterior division Right) N54 18 

55.  atlas.OP l (Occipital Pole Left) N55 18 

56.  atlas.Amygdala r N56 18 

57.  atlas.SCC r (Supracalcarine Cortex Right) N57 18 

58.  atlas.sLOC r (Lateral Occipital Cortex, superior division Right) N58 19 

59.  atlas.aSTG r (Superior Temporal Gyrus, anterior division Right) N59 19 

60.  atlas.iLOC l (Lateral Occipital Cortex, inferior division Left) N60 19 
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61.  atlas.SMA r (Juxtapositional Lobule Cortex -formerly Supplementary Motor 

Cortex- Right) 

N61 19 

62.  atlas.OFusG l (Occipital Fusiform Gyrus Left) N62 19 

63.  atlas.aSMG l (Supramarginal Gyrus, anterior division Left) N63 19 

64.  atlas.OFusG r (Occipital Fusiform Gyrus Right) N64 20 

65.  atlas.HG l (Heschl's Gyrus Left) N65 20 

66.  atlas.pSTG r (Superior Temporal Gyrus, posterior division Right) N66 20 

67.  atlas.Ver6 (Vermis 6) N67 20 

68.  atlas.FP l (Frontal Pole Left) N68 20 

69.  atlas.MedFC (Frontal Medial Cortex) N71 20 

70.  atlas.pTFusC l (Temporal Fusiform Cortex, posterior division Left) N72 21 

71.  atlas.Thalamus r N73 21 

72.  atlas.Cuneal r (Cuneal Cortex Right) N74 21 

73.  atlas.PO r (Parietal Operculum Cortex Right) N75 21 

74.  atlas.toMTG l (Middle Temporal Gyrus, temporooccipital part Left) N76 21 

75.  atlas.SubCalC (Subcallosal Cortex) N78 21 

76.  atlas.PP r (Planum Polare Right) N79 21 

77.  atlas.pTFusC r (Temporal Fusiform Cortex, posterior division Right) N80 22 

78.  atlas.ICC r (Intracalcarine Cortex Right) N82 22 

79.  atlas.LG r (Lingual Gyrus Right) N83 22 

80.  atlas.TOFusC r (Temporal Occipital Fusiform Cortex Right) N84 22 

81.  atlas.HG r (Heschl's Gyrus Right) N85 22 

82.  atlas.aITG r (Inferior Temporal Gyrus, anterior division Right) N86 23 

83.  atlas.Ver7 (Vermis 7) N87 23 

84.  atlas.OP r (Occipital Pole Right) N88 23 

85.  atlas.aSTG l (Superior Temporal Gyrus, anterior division Left) N89 24 

86.  atlas.MidFG r (Middle Frontal Gyrus Right) N90 25 

87.  atlas.AG l (Angular Gyrus Left) N91 25 

88.  atlas.FOrb l (Frontal Orbital Cortex Left) N92 25 

89.  atlas.AG r (Angular Gyrus Right) N93 25 

90.  atlas.PC (Cingulate Gyrus, posterior division) N94 26 

91.  atlas.Ver45 (Vermis 4 5) N95 26 

92.  atlas.aSMG r (Supramarginal Gyrus, anterior division Right) N96 26 

93.  atlas.AC (Cingulate Gyrus, anterior division) N97 26 

94.  atlas.FOrb r (Frontal Orbital Cortex Right) N98 26 

95.  atlas.LG l (Lingual Gyrus Left) N99 26 

96.  atlas.pSMG l (Supramarginal Gyrus, posterior division Left) N100 27 

97.  atlas.SMA L(Juxtapositional Lobule Cortex -formerly Supplementary Motor 

Cortex- Left) 

N101 27 

98.  atlas.pMTG l (Middle Temporal Gyrus, posterior division Left) N102 28 

99.  atlas.PaCiG r (Paracingulate Gyrus Right) N103 28 

100.  atlas.pSMG r (Supramarginal Gyrus, posterior division Right) N104 29 

101.  atlas.TOFusC l (Temporal Occipital Fusiform Cortex Left) N105 29 

102.  atlas.CO r (Central Opercular Cortex Right) N106 30 
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103.  atlas.Cereb6 l (Cerebelum 6 Left) N107 30 

104.  atlas.PostCG l (Postcentral Gyrus Left) N108 30 

105.  atlas.aMTG l (Middle Temporal Gyrus, anterior division Left) N109 30 

106.  atlas.IFG tri r (Inferior Frontal Gyrus, pars triangularis Right) N110 30 

107.  atlas.SFG r (Superior Frontal Gyrus Right) N111 30 

108.  atlas.PO l (Parietal Operculum Cortex Left) N112 30 

109.  atlas.SFG l (Superior Frontal Gyrus Left) N113 31 

110.  atlas.MidFG l (Middle Frontal Gyrus Left) N114 31 

111.  atlas.TP r (Temporal Pole Right) N115 32 

112.  atlas.IFG oper r (Inferior Frontal Gyrus, pars opercularis Right) N116 33 

113.  atlas.CO l (Central Opercular Cortex Left) N117 33 

114.  atlas.Thalamus l N118 33 

115.  atlas.PT l (Planum Temporale Left) N119 34 

116.  atlas.Precuneous (Precuneous Cortex) N120 34 

117.  atlas.Cereb2 l (Cerebelum Crus2 Left) N121 34 

118.  atlas.PreCG r (Precentral Gyrus Right) N122 35 

119.  atlas.FP r (Frontal Pole Right) N123 35 

120.  atlas.PreCG l (Precentral Gyrus Left) N124 35 

121.  atlas.pMTG r (Middle Temporal Gyrus, posterior division Right) N125 37 

122.  atlas.TP l (Temporal Pole Left) N126 38 

123.  atlas.PostCG r (Postcentral Gyrus Right) N127 38 

124.  atlas.PT r (Planum Temporale Right) N128 38 

125.  atlas.IC l (Insular Cortex Left) N129 39 

126.  atlas.Cereb1 l (Cerebelum Crus1 Left) N130 39 

127.  atlas.Cereb6 r (Cerebelum 6 Right) N131 39 

128.  atlas.Cereb45 l (Cerebelum 4 5 Left) N132 46 

 
 

2.4.1 Node Significance indicator 

The selected metrics were used to generate a node significant indicator that specifies the significant of a 
node by considering and comparing the changing in the values of the metric before and after a node is 
removed from the subgraph R. A decrease in the value of each metric whenever a node is removed 
indicates significance and an increase in the value indicates insignificance. The results of the three metrics 
combined to form a logical decision table that indicates the significance of a node (see Table Error! No text 
of specified style in document..1) 
 
Table Error! No text of specified style in document..1  Node Significance Indicator 

S/N Assortativity Clustering Global Efficiency Node 
Significance 

1.  Increase Increase Increase Insignificant 

2.  Increase Increase Decrease Insignificant 

3.  Increase Decrease Increase Insignificant 
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4.  Decrease Increase Increase Insignificant 

5.  Increase Decrease Decrease Significant 

6.  Decrease Increase Decrease Significant 

7.  Decrease Decrease Increase Significant 

8.  Decrease Decrease Decrease Significant 

 

2.4.2 Voting Rule 

In order to reconstruct a new brain model from the node significance recordings across multiple subjects’ 
brain, a classification strategy is required to determine which nodes will be retained and we nodes are to 
be merged. Owing to this, a majority voting rule will be employed. In majority rule each individual classifier 
represents one score that is either as a whole assigned to one class label or divided into several labels. 
The label, which receives more than half of the total scores, is taken as the final result [55-56].  
The majority voting rule has been proved to be effective in different cases of fusing and labelling brain 
segmentations [57-59] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. RESULTS AND DISCUSSION 
3.1 Results 
 
The evaluation of the Node Vitality Model (NVM) was conducted using both simulated and real fMRI 
datasets to assess its efficacy in brain network parcellation. The results were analyzed based on three key 
network metrics: segregation, integration, and resilience. 
 
3.1.1 Measure of Segregation  
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Figure 6: Line Graph showing changes in the clustering metric triggered by node removal 

The clustering coefficient was used to evaluate the segregation properties of the brain network. As shown 

in Figure 6, the clustering values for different nodes were assessed before and after their removal. The red 

boundary line represents the initial clustering coefficient before node removal. Any node removal that 

resulted in a decrease in clustering value below this boundary was considered significant. The results 

revealed that several nodes exhibited substantial reductions in clustering coefficient, indicating their strong 

contribution to network segregation. 

3.1.2 Measure of Integration  
 

 
Figure 7: Line Graph showing changes in the global efficiency metric triggered by node 

removal 

Global efficiency was employed to measure the level of integration within the brain network. Figure 7 
illustrates the variations in global efficiency values triggered by the removal of individual nodes. Similar to 
the clustering analysis, the red line serves as the reference point for the pre-removal efficiency. Nodes 
whose removal led to a significant drop in global efficiency were deemed critical for network integration. 
The findings demonstrated that the NVM successfully identified key nodes that enhance the 
interconnectedness of brain regions, thereby reinforcing network integration. 
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3.1.3 Measure of Resilience  
 

 
Figure 8: Line Graph showing changes in the assortatvity metric triggered by node 

removal 

Resilience was evaluated using the assortativity metric, which reflects the tendency of nodes to connect 
with similar nodes. Figure 8 presents the changes in assortativity values following node removal. The results 
show that certain nodes played a crucial role in maintaining the network’s resilience, as their removal 
caused a noticeable decrease in assortativity. Nodes whose removal had minimal impact on assortativity 
were classified as less significant and were candidates for merging 
 
 
3.2 Discussion   
Here, the implications of putting this research's technique into practice are explored. Accordingly, the 
implications and reasons of the experiment's findings are stressed. 
 
3.2.1 Implication of results  
The graph metrics were obtained after each node was successively eliminated to ascertain its significance. 
According to the findings, assortativity varied between 0.0022 and 0.1394, clustering varied between 0.5267 
and 0.9083, and overall effectiveness varied between 0.5172 and 0.9167. 
The node that has the status "Merge" is combined with its neighbours' nodes that have the most edges and 
similar brain functions. The regions that resulted from the merging sequence are displayed. 
 
 
3.2.2 Strenghts and Weaknesses 
 
The fact that 52 nodes were combined and 80 nodes were kept does not affect the integrity of the brain 
network because it is merely a reassignment of regions to be included in other nearby regions that share a 
high level of connection. Therefore, having fewer nodes means that there is a dramatic increase in 
connection between brain regions and a consequent reduction in the segregation between previously 
distant regions. 
The node vitality algorithm-generated brain graph was compared to the prior network metrics of the brain 
graph that were collected using an atlas. Our finding (see Table 2) demonstrates that after the non-
significant nodes were merged with the retained nodes, the network metric with regards to resilience, 
segregation, and integration has a noticeable improvement across most of the subjects. Due to its higher 
level of integrated sections, the newly developed brain network becomes more sensitive to changes, which 
will better tracking of both minor and significant flaws in the brain regions. 
 
Table 2. Network Performance of parcellation result 
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S/N Subjects Assortativity Clustering Global Efficiency 

Merge Effect Merge Effect Merge Effect 

Before After Before After Before After 

1.  Subject 1 0.311502 0.344501 0.483007 0.5311 0.51492 0.52135 

2.  Subject 2 0.30615 0.329682 0.476801 0.47891 0.50345 0.56712 

3.  Subject 3 0.314424 0.401048 0.46205 0.516771 0.544947 0.567226 

4.  Subject 4 0.374363 0.459906 0.514738 0.585986 0.563227 0.587811 

5.  Subject 5 0.312828 0.368161 0.514486 0.568022 0.56724 0.603792 

6.  Subject 6 0.363692 0.454385 0.478571 0.544347 0.506079 0.545726 

7.  Subject 7 0.386139 0.457272 0.482184 0.533078 0.589733 0.619357 

8.  Subject 8 0.382528 0.436118 0.486087 0.542555 0.53586 0.574051 

9.  Subject 9 0.366856 0.425141 0.46445 0.514577 0.574879 0.622306 

10.  Subject 10 0.336813 0.402709 0.460017 0.548403 0.599942 0.634521 

11.  Subject 11 0.378585 0.465928 0.487119 0.552857 0.530345 0.57993 

12.  Subject 12 0.311474 0.379887 0.508827 0.591999 0.520402 0.545346 

13.  Subject 13 0.341475 0.414638 0.471115 0.569332 0.548645 0.572307 

14.  Subject 14 0.3715 0.42218 0.497902 0.57909 0.542894 0.5682 

15.  Subject 15 0.300356 0.397988 0.462269 0.557268 0.578539 0.620174 

16.  Subject 16 0.355757 0.450832 0.516455 0.568045 0.547032 0.596431 

17.  Subject 17 0.342448 0.417125 0.467121 0.525014 0.55526 0.600021 

18.  Subject 18 0.377373 0.442056 0.469771 0.536946 0.567461 0.589868 

19.  Subject 19 0.309714 0.387828 0.453291 0.548148 0.575991 0.613694 

20.  Subject 20 0.389186 0.461966 0.51899 0.579311 0.572925 0.615253 

21.  Subject 21 0.319067 0.380249 0.489227 0.55598 0.589379 0.615561 

22.  Subject 22 0.319178 0.402468 0.464107 0.53309 0.505097 0.530379 

23.  Subject 23 0.34952 0.409292 0.505155 0.597183 0.567463 0.615543 

24.  Subject 24 0.372455 0.45536 0.478102 0.541073 0.529317 0.575966 

25.  Subject 25 0.379312 0.451597 0.491345 0.568557 0.586559 0.630959 

26.  Subject 26 0.365657 0.437346 0.468464 0.531036 0.572679 0.594004 

27.  Subject 27 0.308794 0.369813 0.460701 0.5183 0.544478 0.582385 

28.  Subject 28 0.319697 0.386209 0.499777 0.587269 0.574629 0.602452 

29.  Subject 29 0.363848 0.452903 0.481362 0.564529 0.525918 0.557531 

30.  Subject 30 0.334927 0.407509 0.519797 0.591387 0.528466 0.557867 

31.  Subject 31 0.338934 0.413455 0.492443 0.592282 0.593663 0.62129 

32.  Subject 32 0.367519 0.440204 0.466628 0.556553 0.591895 0.615589 

33.  Subject 33 0.338245 0.437154 0.494443 0.570132 0.519904 0.546347 

34.  Subject 34 0.339843 0.396897 0.495276 0.566966 0.510407 0.547113 

35.  Subject 35 0.355617 0.421004 0.511199 0.584211 0.558165 0.60102 

36.  Subject 36 0.348353 0.438851 0.487638 0.577082 0.506489 0.531036 

37.  Subject 37 0.368786 0.454781 0.511031 0.58767 0.585106 0.61071 

38.  Subject 38 0.370918 0.446465 0.500297 0.564478 0.522424 0.56667 

39.  Subject 39 0.387806 0.451837 0.512203 0.574348 0.581004 0.606272 

40.  Subject 40 0.347294 0.411239 0.519597 0.616677 0.548052 0.585269 

41.  Subject 41 0.308587 0.387092 0.453271 0.546047 0.514482 0.549332 

42.  Subject 42 0.367974 0.452045 0.512289 0.592553 0.553398 0.601827 

43.  Subject 43 0.340317 0.420682 0.486577 0.578909 0.555038 0.593346 

44.  Subject 44 0.37176 0.452541 0.451431 0.50372 0.58775 0.614837 

45.  Subject 45 0.334454 0.390929 0.457525 0.543783 0.570763 0.598752 

46.  Subject 46 0.397102 0.46641 0.498342 0.597374 0.598915 0.622774 

47.  Subject 47 0.334006 0.408818 0.46813 0.548527 0.583736 0.615149 

48.  Subject 48 0.317961 0.384088 0.461453 0.560052 0.597486 0.638197 

49.  Subject 49 0.312614 0.401225 0.461431 0.47372 0.533869 0.567436 

50.  Subject 50 0.3151 0.30978 0.45680 0.4722 0.5287 0.5455 
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The findings from the three metrics collectively guided the classification of significant and insignificant 
nodes. The majority voting rule was applied to determine the final parcellation, leading to the retention of 
80 significant nodes and the merging of 52 nodes. Table 2 presents the network performance metrics before 
and after the application of the NVM across multiple subjects. 
 
The results indicate that the parcellation achieved through the NVM led to an overall improvement in 
network connectivity. The refined brain network exhibited enhanced integration and resilience, suggesting 
that the NVM provides a more consistent and biologically meaningful framework for brain parcellation 
compared to traditional atlas-based approaches. 
 
4. CONCLUSION 
 
This study has revealed that the node vitality measure algorithm is an effective tool for dividing parcellating 
the brain more uniformly compared to existing arbitrary approaches, due to its consistency of node 
classification across different subjects.  The node vitality measure program can be utilized remotely by any 
research lead using Google Colab's free source program. The resulting significance of ROIs across multiple 
subjects can be utilized to evenly partition the brain into relevant regions of interest. To bolster and improve 
its efficacy, the node vitality model could be expanded to include more than three graph metrics. The 
addition of additional measures will guarantee a more comprehensive assessment of node significance and 
classification. Because some research implies that using numerous atlases instead of a single atlas result 
in more reliable findings, the usage of multiple atlases for the initial parcellation operation can be further 
investigated. To find the optimal clinical use of the node vitality parcellation model, the medical ramifications 
of node categorization might be investigated. 
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