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Abstract:

Introduction: Let &, = {1,2,3,——.v} be ordered finite set. The tropical
geometry was utilized to analyze the subsemigroup of order-decreasing and
order-preserving full transformation semigroups, denotedas o, n g, = C,.
The elements of classical algebra within ¢, were transformed into tropical
polynomials, allowing for the determination of tropical roots and their
multiplicities through the tropical curve, which was visualized using
GeoGebra.

Aims: The primary aim of this study is to establish a connection between
tropical geometry and the algebraic structure of Sub semigroup of Order-
Decreasing and Order-Preserving full transformation semigroups

Materials and Methods: The study begins by extracting the elements of the
C, from T, detailing its structure and properties. Elements of £, are then
converted into tropical polynomials using tropical algebraic operations,
specifically tropical addition and multiplication. The study examines these
tropical polynomials and computes the multiplicities of their roots using
GeoGebra software to illustrate them graphically. Theorems are formulated
to describe the properties of the tropicalized elements, with proofs provided
to support these results. Furthermore, tropical curves are analyzed to
observe the structure of the transformations, and examples are presented to
illustrate and confirm the theoretical findings.

Results: The findings reveal that, although the tropical roots differ for each
value of 1, the corresponding multiplicities remain the same, and the sum of
these multiplicities equals the degree of the associated classical polynomial.
Moreover, it was observed that for 1 = v = 3 , all multiplicities have a height
of 1, whereas for 1 = 3 , the height of the multiplicities is 2. Additionally, for
v = 2, the multiplicities follow the pattern (1,v— 2, 1}.

Conclusion: This work offers insightful results and lays a solid foundation
for further exploration in the area of tropical geometry and transformation
semigroups, especially for those interested in the interplay between
algebraic and tropical structures.

Keywords: Semigroup, Full Transformation, Subsemigroup of Order-
Decreasing and Order-Preserving, Tropical polynomial, Tropical curve,
Multiplicity and Height.
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1. INTRODUCTION

A semigroup is an algebraic structure consisting of a non-empty set S equipped with an associative
binary operation. That is, for all elements a.b £ 5, the following condition holds: a.(b.c) = (a.b).c

A transformation semigroup is a collection of transformations (i.e., functions from a set to itself) that is
closed under function composition. If this collection includes the identity function, it is called a monoid.
Transformation semigroups play a fundamental role in theoretical computer science and other areas of
mathematics. There are three Transformation semigroups introduced by Howie[6] and defined as below

Let f1, = [1,2,3,——. v} be a finite, ordered set. A transformation a: Dom (&) — Im(a) = {1, is said to be:
Full, if Dom(a) = 0, denoted by T,. Partial, if Dem(a) = X, denoted by F, and injective partial, if is
injective and partial, denoted by I, .

A subsemigroup of a semigroup S is a non-empty subset T = 5 that is closed under the binary operation
of 5. In other words, T itself forms a semigroup under the same operation. Tropical geometry is not
merely a recreational curiosity for mathematicians; rather, it serves as a powerful tool for studying
degenerations of classical algebraic structures.

The tropical world can often be viewed as a limit or simplification of the classical world, where many
essential properties are preserved. Thus, a tropical statement frequently has a corresponding classical
analogue. One of the main advantages of tropical mathematics is that tropical objects are piece-wise
linear, making them more tractable than their classical counterparts. Prior to the widespread adoption of
the term tropical algebra, this field was commonly known as max-plus, algebra.

A tropical polynomial expression of the form P(x) = £¥_,a; x' induces a tropical polynomial function,
denoted by F on the tropical semiring T;

P:T—T 1)

In mathematics, tropical geometry studies polynomials by examining their geometric properties. Despite
its unconventional structure, it satisfies fundamental geometric properties, making it a useful tool for
various mathematical disciplines.

The set of tropical numbers is defined as T =R U {—=} endowed with the operations called tropical
addition and multiplication:

"HE 0" = max {u.0} (2)

'W@ao" =p@ao 3

with the usual conventions¥p € T. "y & (-=)"=max (y, -=) = p and
WO (=)= @ (=)= = (@)

Unlike classical arithmetic, tropical addition lacks an additive inverse, meaning tropical numbers form a
semi-field rather than a full field. Notably, in tropical operations 2p ="u & p" but "2y" =u & 2 and

"0p" = w but not equal to 0. For example, 3 @5 =35 and 3®5 =4,

Despite the growing interest in tropical geometry see [Bakare [2], Brugalle et. al.[3], Brugalle [4],ibrahim
et. al [7], Itemberg et. al[8],Katz [9], Maclagan[10] ], its applications in algebraic structures and semigroup
theory see [Brugalle and Shaw [5], Usamot et. all[11]], there has been limited investigation into its
application to transformation semigroups particularly Sub semigroup of Order-Decreasing and Order-
Preserving Full Transformation Semigroups (C,). However, Umar [12] examined the tropicalization of
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idempotent elements in full transformation semigroups. Recent findings on tropical geometry and
transformation semigroups can be found in [Bakare [1], Umar[6]]. This work connects tropical geometry
with semigroup theory, specifically through the study of tropical polynomials and their multiplicities within
the semigroup of £,. The elements in £, are transformed into tropical polynomials, and we established
Theorems to describe their properties. Relevant examples are provided to validate the results.

2. METHODOLOGY

The study begins by extracting the elements of the €, from T, detailing its structure and properties.
Elements of (, are then converted into tropical polynomials using tropical algebraic operations,
specifically tropical addition and multiplication. The study examines these tropical polynomials and
computes the multiplicities of their roots using GeoGebra software to illustrate them graphically.
Theorems are formulated to describe the properties of the tropicalized elements, with proofs provided to
support these results. Furthermore, tropical curves are analyzed to observe the structure of the
transformations, and examples are presented to illustrate and confirm the theoretical findings.

Definition 2.1 Brugalle et. al [3]: A tropical number 7 is a root of a Polynomial F{x)in one variable in
which the points x, on the graph P(x) has a corner at x, for —oe = 7 = o2,

Definition 2.2 Brugalle et. al [3]: The Multiplicity of a tropical root I denoted by M(r) defined as
() =12, — 2.l

Mz} = E¥_,|2; — ;.| where 17; are the slopes of the lines in the tropical curve of Fix) intersecting
above .

Proposition 2.3 Brugalle et. al [3]: The tropical semi-field is algebraically closed. That is, every tropical
polynomial of degree d = 0 has exactly d roots when counted with multiplicities.

Definition 2.4 Umar[12]: A transformation weC, is called an order-decreasing transformation if,
wueDom (), we have walu) =u The set of such transformations forms the order-decreasing
transformation semigroup, denoted by I, .

Definition 2.5 Umar [12]: A transformation w@eC, is called an order-preserving transformation
if, ¥ u. 0 eDom (), with 4 < o, it holds that e{u) = e«(a). The set of such transformations form the order-
preserving transformation semigroup, denoted by @,

3. RESULTS AND DISCUSSION

Theorem 3.1: Let § = £, be the semigroup of transformations that are both

order-decreasing and order-preserving. Then, every element in £, has the same multiplicity

for each w.

Proof: Let § = €, and consider two elements: a. B § such that & = ("I"f,wf: e )
2 02— ——fu

and g = (“1 2 “---2 Jfory, =w, €dom(a.B)and, g, € Im(a.8).

Consider the polynomials defined from & and g i.e

alx) = yxt + ¢|’+LIU_L + ¢|’+:xu_: + -+ #"l’+i.'-ru_k - fl’xu_L + '5-_|'+J.xu_: -t §|'+F;-ru_k
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and

Blx) = anpx? + eop, X1 F x4 byt — g P ot

Their corresponding tropical polynomial forms are;

Tale) ="gr® + a0 4 o™+ o b ™™ — g b g xR gy

T Blx) = enx? 4 e 2% ey oV e b xR PR e g iR

which, using tropical operations, correspond to the expressions:

max{y; +ve,, + o —Ur o+ —Krg— - Dxc, + @ - 2Dx o + (v — k)x)
max{ow; +vxwi, + 0 — DU, wpy + v — ket —w—Ux,ryy — (0 —20x, 1+ (o — K ab

By analyzing the tropical curves associated with T, and Ty, for various values of

X, we observe that although these functions may have different tropical roots, they exhibit

the same multiplicities at those roots. i.e, |[M T | = [MTz4 ]

Theorem 3.2: Every transformation in the semigroup, for 1 = 1 = 3, with difference in tropical root has
multiplicity of height 1

Proof. Let us consider transformations in £, for small values of 1:

Caser=1

@
o= [ﬂi] = clasical polynomial: f(x) = a;x + g, = Tropical form:T{x) = max(a, + x. g,)

a e .
Caser =12 o= [ﬂl ﬂ-] = clasical polynomial: flx) = ax*+a,x+ g x + g, =
L 2

Tropical form:T(x) = max(a, + 2x.a- + 2. g9, + . 4.

M, . g
Caser =3 ”z[sh g g

] = clasical polynomial:

fix) =ax*+ ax®+azx+ g1x> + gox+ g3 =

Tropical form:T(x) = max({a, + 3x.a. + 2x. a0, + 2. g, + x. 42

In each of these cases, the tropical polynomial produces a piecewise linear function whose graph has
only one corner (i.e., one tropical root), and the change in slope at that corner is 1. Therefore, the
multiplicity at the tropical root is: MT(x) = 1

This confirms that for all n such that 1 = » = 3 , every transformation in £, yields a tropical polynomial
with multiplicity of height 1.

Theorem 3.3: For all v = 4 with difference tropical root, the multiplicities in the semigroup €, have a
uniform height of 2
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Proof. This result follows directly from Theorem 2, which established the multiplicity height for +» = 3. For
v = 4, analysis of the tropical polynomials associated with elements of C, reveals that the change in slope
at the tropical roots consistently results in multiplicities of height 2. In particular:

MTC, = MTC; =+ =2

Thus, for all v = 4, the tropical multiplicity in C,, satisfies: MTC, =2

Examples of Tropical Roots and Multiplicities in €,
In this section, we examine selected elements from the semigroup ¢, for values of v = 1 to

v = 4. For each case, the corresponding classical polynomial and tropical polynomial are constructed,
and the tropical root along with its multiplicity is computed

Table 1. Tropical Root and Multiplicity for €,
Cy Classical Tropical Root Multiplicity
polynomial polynomial
(1) (x+1) Max(x,1) 1 1
1

Table 2. Tropical Root and Multiplicity for €,
C, Classical polynomial Tropical polynomial Roots Multiplicities
('J. 2) (x*+3x+1) max {2x, x + 3.1} —2and 3 1.1

11
('J. 2) (x*+3x+2) max {2x,x + 3,2} —land 3 1.1

1 2
Table 3. Tropical Root and Multiplicity for Cy
Cy Classical polynomial Tropical polynomial Roots Multiplicities
('J. 2 3) ¥ 4 3xt Ldx 41 max {3x,2x + 3, x +4.1} | —3.1land 3 11,1

1 1 1
('J. 2 3) ¥+ 3x% 4y +2 max {3x,2x + 3. x +4.2} | —2land 3 | L.1.1

1 1 2
('J. 2 3) ¥ 4+ 3% 4y +3 max {3x, 2xr + 3. xr +43} | —Lland 3 | L1.1

1 1 3
('J. 2 3) x¥ 4 3x% L 5x 42 max {3x,2x + 3.x +5.2} | —3.2and 3 | L.1.1

1 2 2
(J. 2 3) ¥ 4 3x £ 5x 43 max {3x,2x + 3, x +5.2} | —22and 3 | L1.1

1 2 3
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Table 4. Tropical Root and Multiplicity for €y

C, Classical polynomial Tropical polynomial Roots Multiplicities

(Jj: f 31- T) x4+ 3 4 + 50+ 1 | max 4x,3x + 3. 2x+4x+51) | —4land 3 12,1

(JJ: f i ;) a3 4t 4+ 60+ 2 | max 4x,3x + 3. 2x +4x + 6,2} | —415and 3 | 12,1

(t f g :) x4+ 3t 4 6+ 3 | max 4. 3x + 3 2x +4x+ 63} | —3.15and 3| 12,1

Table 5. Tropical Root and Multiplicity for €5

Cs Classical polynomial Tropical polynomial Roots Multipliciti
es

(1 2 345) x% 4 3x% + 4x? + 527 + G 4 tnax (S5x, 4x + 3.3x + 4,

2x+5.x+ 883 1and 3 | 131

(1 2 345 2% +3x% + 42 + 527 + 6x 4 Wmax (5x.4x + 3.3x + 4,

2x+ 5, x+6.53L1and 3 | L3,1

(1 2 3493 x¥ 43 44 L 5xT LT

Max (Sx.4x + 3.3x + 4,

x4+ 50,x+.2513and 3 1.3.1

Graphical lllustration

The following figures demonstrate how the tropical roots and their associated multiplicities were obtained

with the aid of Geogebra.

Example 1: Let &. 8 e C; , then consider the transformations & = (1J,(2 1].(3) and g = (1), (2)( 3 2] with

polynomial functions;
a(x) =x% +3x% + 4x + 3

Blx)=x"+3x"+5x +2

By the virtue of (2) and (3) we have; Ta(x) = max{3x,2x + 3.x + 4.3}

TA(x) =max{3x, 2x + 3, x+ 5.2}
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Graphically,

Tropical curve of a(x)

1L

=

& & __rﬂf 4
GRAPH |

Fig. 1. Example of Tropical Root and Multiplicity for Cs

From Graph I, the roots are;7, = —1,7. =1 and r; =3 with slopes 2, =0,2.=1,2,=2 and 2,=13

having multiplicities

ME)=10,-0.01=1 M) =N -2l =1and M(5;) =10, —m,l =1

Thus, the multiplicity of Ty, = (1 1 1) = [MTyp| =1
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Tropical curve of g(x)

" (.-" =

-

GRAPH

Fig. 2. Example of Tropical Root and Multiplicity for Cs

From Graph Il, the roots are;r, = —2,t, = 2 and ; =3 with slopes 7, =02, =1.12,=2 and 1,=3

having multiplicities

ME)=10,-00=1,M@E) =N -0l =1and M(r;) =10, — 0,1 =1

Thus, the multiplicity of T, = (1 1 1) = [MTyp| =1

Example 2: Let fe(, , then consider the transformations « = (1},(2 1],(3 2](4 2] with polynomial
functions; £(x) = x* + 3x% + 4x* + 6x + 2

By the virtue of (2) and (3) we have; Tf(x)} = max {4x,3x + 3, 2x + 4 x4+ 8,2}
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Graphically,

Tropical curve of &(x)

/

Tl .'f
& . )g H
4 5 Az A / R

7 -5

g B
1
"

|

GRAPH 11

Fig. 3. Example of Tropical Root and Multiplicity for C4
From Graph Ill, the roots are;r; = —4,7. = 1.3 and r; =3 with slopes 2, = 0.2, =1,2, =3 and 1, = 4
having multiplicities

Mr)=I0,-2l=1Mz)=10-0;l=2and M(z;) =10, -0,/ =1

Thus, the multiplicity of T, ,, = (1 2 1} = |MT,ul =2

Example 3: Let we C, , then consider the transformations i = (1), (5),(2 1].(3 1](4 1] with polynomial
functions; W) = x* + 32+ 4x¥ $ 9%  + 6 4+ 5

By the virtue of (2) and (3) we have; Ty{x) = max (3x,4x + 3.3x + 4, 2x + 3, x +6.3)
Graphically,

From Graph 1V, the roots are;r, = —4,7, =1 and t; =3 with slopes 2, = 0.2, =1.12;, =4 and 2,=75
having multiplicities

Mir)=I10, -21=1Mz.) =10, -2l =3and M(z;) =0, — 2,1 =1

Thus, the multiplicity of Ty, = ({1 3 1) = |MTgy | =12
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Tropical curve of i (x)

% it/ a /
u
=
20 o a
(]
10
16 /
1 / !
12 0, ) /
10 //
]
[28 :
k 0,
|
% /|
/// v ff ! |H.
11 -0 a ] -r_/-a -5 - 3// -2 / o 2 3 3 5 [ 7 ] a 10 11 12 13 [ 15

GRAPH IV
Fig. 4. Example of Tropical Root and Multiplicity for Cs

4. CONCLUSION

In this study, we examined elements of the full transformation semigroup that are both order decreasing
and order-preserving. Our investigation focused on cases where + = 1,2,3.4,3. The findings reveal that,
although the tropical roots differ for each value of -, the corresponding multiplicities remain the same, and
the sum of these multiplicities equals the degree of the associated classical polynomial.

Moreover, it was observed that for 1 = + = 3, all multiplicities have a height of 1, whereas for v = 3,
the height of the multiplicities is 2. Additionally, for v = 2, the multiplicities follow the pattern {1, v — 2, 1}.

This work offers insightful results and lays a solid foundation for further exploration in the area of
tropical geometry and transformation semigroups, especially for those interested in the interplay between
algebraic and tropical structures.
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